RadiomicsRetrieval: A Customizable Framework for Medical Image Retrieval Using Radiomics Features
- URL: http://arxiv.org/abs/2507.08546v1
- Date: Fri, 11 Jul 2025 12:48:25 GMT
- Title: RadiomicsRetrieval: A Customizable Framework for Medical Image Retrieval Using Radiomics Features
- Authors: Inye Na, Nejung Rue, Jiwon Chung, Hyunjin Park,
- Abstract summary: RadiomicsRetrieval is a 3D content-based retrieval framework for medical images.<n>Unlike existing 2D approaches, RadiomicsRetrieval fully exploits volumetric data to leverage richer spatial context in medical images.
- Score: 3.0015555136149175
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical image retrieval is a valuable field for supporting clinical decision-making, yet current methods primarily support 2D images and require fully annotated queries, limiting clinical flexibility. To address this, we propose RadiomicsRetrieval, a 3D content-based retrieval framework bridging handcrafted radiomics descriptors with deep learning-based embeddings at the tumor level. Unlike existing 2D approaches, RadiomicsRetrieval fully exploits volumetric data to leverage richer spatial context in medical images. We employ a promptable segmentation model (e.g., SAM) to derive tumor-specific image embeddings, which are aligned with radiomics features extracted from the same tumor via contrastive learning. These representations are further enriched by anatomical positional embedding (APE). As a result, RadiomicsRetrieval enables flexible querying based on shape, location, or partial feature sets. Extensive experiments on both lung CT and brain MRI public datasets demonstrate that radiomics features significantly enhance retrieval specificity, while APE provides global anatomical context essential for location-based searches. Notably, our framework requires only minimal user prompts (e.g., a single point), minimizing segmentation overhead and supporting diverse clinical scenarios. The capability to query using either image embeddings or selected radiomics attributes highlights its adaptability, potentially benefiting diagnosis, treatment planning, and research on large-scale medical imaging repositories. Our code is available at https://github.com/nainye/RadiomicsRetrieval.
Related papers
- PRS-Med: Position Reasoning Segmentation with Vision-Language Model in Medical Imaging [6.411386758550256]
PRS-Med is a framework that integrates vision-language models with segmentation capabilities to generate both accurate segmentation masks and corresponding spatial reasoning outputs.<n> MMRS dataset provides diverse, spatially-grounded question-answer pairs to address the lack of position reasoning data in medical imaging.
arXiv Detail & Related papers (2025-05-17T06:42:28Z) - RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [48.21287619304126]
We propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities.<n>We construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans.<n>We develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks.
arXiv Detail & Related papers (2025-03-06T17:43:03Z) - MedFuncta: Modality-Agnostic Representations Based on Efficient Neural Fields [1.931185411277237]
We introduce MedFuncta, a modality-agnostic continuous data representation based on neural fields.<n>We demonstrate how to scale neural fields from single instances to large datasets by exploiting redundancy in medical signals.<n>We release a large-scale dataset of > 550k annotated neural fields to promote research in this direction.
arXiv Detail & Related papers (2025-02-20T09:38:13Z) - SegmentAnyBone: A Universal Model that Segments Any Bone at Any Location
on MRI [13.912230325828943]
We propose a versatile, publicly available deep-learning model for bone segmentation in MRI across multiple standard MRI locations.
The proposed model can operate in two modes: fully automated segmentation and prompt-based segmentation.
Our contributions include (1) collecting and annotating a new MRI dataset across various MRI protocols, encompassing over 300 annotated volumes and 8485 annotated slices across diverse anatomic regions.
arXiv Detail & Related papers (2024-01-23T18:59:25Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models [72.8965643836841]
We introduce XrayGPT, a novel conversational medical vision-language model.<n>It can analyze and answer open-ended questions about chest radiographs.<n>We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGen is a radiologist-minded report generation framework across six anatomical regions.
In X-RGen, we seek to mimic the behaviour of human radiologists, breaking them down into four principal phases.
We enhance the recognition capacity of the image encoder by analysing images and reports across various regions.
arXiv Detail & Related papers (2023-05-26T07:12:35Z) - Self adaptive global-local feature enhancement for radiology report
generation [10.958641951927817]
We propose a novel framework AGFNet to dynamically fuse the global and anatomy region feature to generate multi-grained radiology report.
Firstly, we extract important anatomy region features and global features of input Chest X-ray (CXR)
Then, with the region features and the global features as input, our proposed self-adaptive fusion gate module could dynamically fuse multi-granularity information.
Finally, the captioning generator generates the radiology reports through multi-granularity features.
arXiv Detail & Related papers (2022-11-21T11:50:42Z) - Radiomics-Guided Global-Local Transformer for Weakly Supervised
Pathology Localization in Chest X-Rays [65.88435151891369]
Radiomics-Guided Transformer (RGT) fuses textitglobal image information with textitlocal knowledge-guided radiomics information.
RGT consists of an image Transformer branch, a radiomics Transformer branch, and fusion layers that aggregate image and radiomic information.
arXiv Detail & Related papers (2022-07-10T06:32:56Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.