Advancing network resilience theories with symbolized reinforcement learning
- URL: http://arxiv.org/abs/2507.08827v1
- Date: Fri, 04 Jul 2025 19:19:35 GMT
- Title: Advancing network resilience theories with symbolized reinforcement learning
- Authors: Yu Zheng, Jingtao Ding, Depeng Jin, Jianxi Gao, Yong Li,
- Abstract summary: Current resilience theories address the problem from a single perspective of topology, neglecting the crucial role of system dynamics.<n>Here, we report an automatic method for resilience theory discovery, which learns from how AI solves a complicated network dismantling problem.<n>This proposed self-inductive approach discovers the first resilience theory that accounts for both topology and dynamics.
- Score: 29.97738497697876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many complex networks display remarkable resilience under external perturbations, internal failures and environmental changes, yet they can swiftly deteriorate into dysfunction upon the removal of a few keystone nodes. Discovering theories that measure network resilience offers the potential to prevent catastrophic collapses--from species extinctions to financial crise--with profound implications for real-world systems. Current resilience theories address the problem from a single perspective of topology, neglecting the crucial role of system dynamics, due to the intrinsic complexity of the coupling between topology and dynamics which exceeds the capabilities of human analytical methods. Here, we report an automatic method for resilience theory discovery, which learns from how AI solves a complicated network dismantling problem and symbolizes its network attack strategies into theoretical formulas. This proposed self-inductive approach discovers the first resilience theory that accounts for both topology and dynamics, highlighting how the correlation between node degree and state shapes overall network resilience, and offering insights for designing early warning signals of systematic collapses. Additionally, our approach discovers formulas that refine existing well-established resilience theories with over 37.5% improvement in accuracy, significantly advancing human understanding of complex networks with AI.
Related papers
- TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
We introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics.
Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%.
arXiv Detail & Related papers (2024-08-19T09:20:31Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
Neural networks demonstrate inherent vulnerability to small, non-random perturbations, emerging as adversarial attacks.
A mathematical congruence manifests between this mechanism and the quantum physics' uncertainty principle, casting light on a hitherto unanticipated interdisciplinarity.
arXiv Detail & Related papers (2024-02-16T02:11:27Z) - Universal Scaling Laws of Absorbing Phase Transitions in Artificial Deep Neural Networks [0.8932296777085644]
Conventional artificial deep neural networks operating near the phase boundary of the signal propagation dynamics, also known as the edge of chaos, exhibit universal scaling laws of absorbing phase transitions.<n>We exploit the fully deterministic nature of the propagation dynamics to elucidate an analogy between a signal collapse in the neural networks and an absorbing state.
arXiv Detail & Related papers (2023-07-05T13:39:02Z) - Correlative Information Maximization: A Biologically Plausible Approach
to Supervised Deep Neural Networks without Weight Symmetry [43.584567991256925]
We propose a new normative approach to describe the signal propagation in biological neural networks in both forward and backward directions.
This framework addresses many concerns about the biological-plausibility of conventional artificial neural networks and the backpropagation algorithm.
Our approach provides a natural resolution to the weight symmetry problem between forward and backward signal propagation paths.
arXiv Detail & Related papers (2023-06-07T22:14:33Z) - Understanding plasticity in neural networks [41.79540750236036]
Plasticity is the ability of a neural network to quickly change its predictions in response to new information.
Deep neural networks are known to lose plasticity over the course of training even in relatively simple learning problems.
arXiv Detail & Related papers (2023-03-02T18:47:51Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
We show that the ability of a neural network to integrate information from diverse sources hinges critically on being exposed to properly correlated signals during the early phases of training.
We show that critical periods arise from the complex and unstable early transient dynamics, which are decisive of final performance of the trained system and their learned representations.
arXiv Detail & Related papers (2022-10-06T23:50:38Z) - Formalizing Generalization and Robustness of Neural Networks to Weight
Perturbations [58.731070632586594]
We provide the first formal analysis for feed-forward neural networks with non-negative monotone activation functions against weight perturbations.
We also design a new theory-driven loss function for training generalizable and robust neural networks against weight perturbations.
arXiv Detail & Related papers (2021-03-03T06:17:03Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
We introduce a new theoretical framework to analyze deep learning optimization with connection to its generalization error.
Existing frameworks such as mean field theory and neural tangent kernel theory for neural network optimization analysis typically require taking limit of infinite width of the network to show its global convergence.
arXiv Detail & Related papers (2020-07-11T18:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.