Revisiting Convergence: Shuffling Complexity Beyond Lipschitz Smoothness
- URL: http://arxiv.org/abs/2507.08913v1
- Date: Fri, 11 Jul 2025 15:36:48 GMT
- Title: Revisiting Convergence: Shuffling Complexity Beyond Lipschitz Smoothness
- Authors: Qi He, Peiran Yu, Ziyi Chen, Heng Huang,
- Abstract summary: Shuffling-type gradient methods are favored in practice for their simplicity and rapid empirical performance.<n>Most require the Lipschitz condition, which is often not met in common machine learning schemes.
- Score: 50.78508362183774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shuffling-type gradient methods are favored in practice for their simplicity and rapid empirical performance. Despite extensive development of convergence guarantees under various assumptions in recent years, most require the Lipschitz smoothness condition, which is often not met in common machine learning models. We highlight this issue with specific counterexamples. To address this gap, we revisit the convergence rates of shuffling-type gradient methods without assuming Lipschitz smoothness. Using our stepsize strategy, the shuffling-type gradient algorithm not only converges under weaker assumptions but also match the current best-known convergence rates, thereby broadening its applicability. We prove the convergence rates for nonconvex, strongly convex, and non-strongly convex cases, each under both random reshuffling and arbitrary shuffling schemes, under a general bounded variance condition. Numerical experiments further validate the performance of our shuffling-type gradient algorithm, underscoring its practical efficacy.
Related papers
- An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes [17.804065824245402]
In machine learning applications, each loss function is non-negative and can be expressed as the composition of a square and its real-valued square root.
We show how to apply the Gauss-Newton method or the Levssquardt method to minimize the average of smooth but possibly non-negative functions.
arXiv Detail & Related papers (2024-07-05T08:53:06Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Convex and Non-convex Optimization Under Generalized Smoothness [69.69521650503431]
An analysis of convex and non- optimization methods often requires the Lipsitzness gradient, which limits the analysis by this trajectorys.
Recent work generalizes the gradient setting via the non-uniform smoothness condition.
arXiv Detail & Related papers (2023-06-02T04:21:59Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - Randomized Coordinate Subgradient Method for Nonsmooth Composite
Optimization [11.017632675093628]
Coordinate-type subgradient methods for addressing nonsmooth problems are relatively underexplored due to the set of properties of the Lipschitz-type assumption.
arXiv Detail & Related papers (2022-06-30T02:17:11Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - Cyclic Coordinate Dual Averaging with Extrapolation [22.234715500748074]
We introduce a new block coordinate method that applies to the general class of variational inequality (VI) problems with monotone operators.
The resulting convergence bounds match the optimal convergence bounds of full gradient methods.
For $m$ coordinate blocks, the resulting gradient Lipschitz constant in our bounds is never larger than a factor $sqrtm$ compared to the traditional Euclidean Lipschitz constant.
arXiv Detail & Related papers (2021-02-26T00:28:58Z) - A Unified Convergence Analysis for Shuffling-Type Gradient Methods [32.8097849940763]
We propose a unified convergence analysis for a generic gradient shufflingtype methods for solving finitesum problems.
Our results suggest some choices appropriate for training rates in certain neural shuffling variants.
arXiv Detail & Related papers (2020-02-19T15:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.