Learning Diffusion Models with Flexible Representation Guidance
- URL: http://arxiv.org/abs/2507.08980v1
- Date: Fri, 11 Jul 2025 19:29:02 GMT
- Title: Learning Diffusion Models with Flexible Representation Guidance
- Authors: Chenyu Wang, Cai Zhou, Sharut Gupta, Zongyu Lin, Stefanie Jegelka, Stephen Bates, Tommi Jaakkola,
- Abstract summary: We present a systematic framework for incorporating representation guidance into diffusion models.<n>We introduce two new strategies for enhancing representation alignment in diffusion models.<n>Experiments across image, protein sequence, and molecule generation tasks demonstrate superior performance as well as accelerated training.
- Score: 37.301580601018365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models can be improved with additional guidance towards more effective representations of input. Indeed, prior empirical work has already shown that aligning internal representations of the diffusion model with those of pre-trained models improves generation quality. In this paper, we present a systematic framework for incorporating representation guidance into diffusion models. We provide alternative decompositions of denoising models along with their associated training criteria, where the decompositions determine when and how the auxiliary representations are incorporated. Guided by our theoretical insights, we introduce two new strategies for enhancing representation alignment in diffusion models. First, we pair examples with target representations either derived from themselves or arisen from different synthetic modalities, and subsequently learn a joint model over the multimodal pairs. Second, we design an optimal training curriculum that balances representation learning and data generation. Our experiments across image, protein sequence, and molecule generation tasks demonstrate superior performance as well as accelerated training. In particular, on the class-conditional ImageNet $256\times 256$ benchmark, our guidance results in $23.3$ times faster training than the original SiT-XL as well as four times speedup over the state-of-the-art method REPA. The code is available at https://github.com/ChenyuWang-Monica/REED.
Related papers
- Diffusion Models without Classifier-free Guidance [41.59396565229466]
Model-guidance (MG) is a novel objective for training diffusion model addresses and removes commonly used guidance (CFG)<n>Our innovative approach transcends the standard modeling and incorporates the posterior probability of conditions.<n>Our method significantly accelerates the training process, doubles inference speed, and achieve exceptional quality that parallel surpass even concurrent diffusion models with CFG.
arXiv Detail & Related papers (2025-02-17T18:59:50Z) - Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
One main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations.<n>We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders.<n>The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs.
arXiv Detail & Related papers (2024-10-09T14:34:53Z) - Plug-and-Play Diffusion Distillation [14.359953671470242]
We propose a new distillation approach for guided diffusion models.
An external lightweight guide model is trained while the original text-to-image model remains frozen.
We show that our method reduces the inference of classifier-free guided latent-space diffusion models by almost half.
arXiv Detail & Related papers (2024-06-04T04:22:47Z) - Structure-Guided Adversarial Training of Diffusion Models [27.723913809313125]
We introduce Structure-guided Adversarial training of Diffusion Models (SADM)
We compel the model to learn manifold structures between samples in each training batch.
SADM substantially improves existing diffusion transformers and outperforms existing methods in image generation and fine-tuning tasks.
arXiv Detail & Related papers (2024-02-27T15:05:13Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Large-scale Reinforcement Learning for Diffusion Models [30.164571425479824]
Text-to-image diffusion models are susceptible to implicit biases that arise from web-scale text-image training pairs.
We present an effective scalable algorithm to improve diffusion models using Reinforcement Learning (RL)
We show how our approach substantially outperforms existing methods for aligning diffusion models with human preferences.
arXiv Detail & Related papers (2024-01-20T08:10:43Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
We propose a novel two-stage divide-and-conquer training strategy termed TDC Training.<n>It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models.<n>While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.