From images to properties: a NeRF-driven framework for granular material parameter inversion
- URL: http://arxiv.org/abs/2507.09005v1
- Date: Fri, 11 Jul 2025 20:15:59 GMT
- Title: From images to properties: a NeRF-driven framework for granular material parameter inversion
- Authors: Cheng-Hsi Hsiao, Krishna Kumar,
- Abstract summary: We introduce a novel framework that integrates Neural Radiance Fields (NeRF) with Material Point Method (MPM) simulation to infer granular material properties from visual observations.<n>Our results demonstrate that friction angle can be estimated with an error within 2 degrees, highlighting the effectiveness of inverse analysis through purely visual observations.
- Score: 1.8231854497751137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel framework that integrates Neural Radiance Fields (NeRF) with Material Point Method (MPM) simulation to infer granular material properties from visual observations. Our approach begins by generating synthetic experimental data, simulating an plow interacting with sand. The experiment is rendered into realistic images as the photographic observations. These observations include multi-view images of the experiment's initial state and time-sequenced images from two fixed cameras. Using NeRF, we reconstruct the 3D geometry from the initial multi-view images, leveraging its capability to synthesize novel viewpoints and capture intricate surface details. The reconstructed geometry is then used to initialize material point positions for the MPM simulation, where the friction angle remains unknown. We render images of the simulation under the same camera setup and compare them to the observed images. By employing Bayesian optimization, we minimize the image loss to estimate the best-fitting friction angle. Our results demonstrate that friction angle can be estimated with an error within 2 degrees, highlighting the effectiveness of inverse analysis through purely visual observations. This approach offers a promising solution for characterizing granular materials in real-world scenarios where direct measurement is impractical or impossible.
Related papers
- PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions.<n>Our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions.
arXiv Detail & Related papers (2024-11-26T07:59:11Z) - Efficient Physics Simulation for 3D Scenes via MLLM-Guided Gaussian Splatting [32.846428862045634]
We present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics.<n>Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception.<n>We also simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling.
arXiv Detail & Related papers (2024-11-19T12:52:21Z) - Triplet: Triangle Patchlet for Mesh-Based Inverse Rendering and Scene Parameters Approximation [0.0]
inverse rendering seeks to derive the physical properties of a scene, including light, geometry, textures, and materials.
Meshes, as a traditional representation adopted by many simulation pipeline, still show limited influence in radiance field for inverse rendering.
This paper introduces a novel framework called Triangle Patchlet (abbr. Triplet), a mesh-based representation, to comprehensively approximate these parameters.
arXiv Detail & Related papers (2024-10-16T09:59:11Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
This paper studies the problem of estimating physical properties (system identification) through visual observations.
To facilitate geometry-aware guidance in physical property estimation, we introduce a novel hybrid framework.
We propose a new dynamic 3D Gaussian framework based on motion factorization to recover the object as 3D Gaussian point sets.
In addition to the extracted object surfaces, the Gaussian-informed continuum also enables the rendering of object masks during simulations.
arXiv Detail & Related papers (2024-06-21T07:37:17Z) - Physics-Based Rigid Body Object Tracking and Friction Filtering From RGB-D Videos [8.012771454339353]
We propose a novel approach for real-to-sim which tracks rigid objects in 3D from RGB-D images and infers physical properties of the objects.
We demonstrate and evaluate our approach on a real-world dataset.
arXiv Detail & Related papers (2023-09-27T14:46:01Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) methods estimate 3D surface deformations from a single monocular RGB camera.
This paper proposes a new SfT approach explaining 2D observations through physical simulations.
arXiv Detail & Related papers (2022-03-22T17:59:57Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
We present a method for synthesizing novel views from a single 360-degree RGB-D image based on the neural radiance field (NeRF)
Experiments demonstrated that the proposed method can synthesize plausible novel views while preserving the features of the scene for both artificial and real-world data.
arXiv Detail & Related papers (2022-03-18T13:49:25Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Sim2Air - Synthetic aerial dataset for UAV monitoring [2.1638817206926855]
We propose to accentuate shape-based object representation by applying texture randomization.
A diverse dataset with photorealism in all parameters is created in a 3D modelling software Blender.
arXiv Detail & Related papers (2021-10-11T10:36:33Z) - Visual Vibration Tomography: Estimating Interior Material Properties
from Monocular Video [66.94502090429806]
An object's interior material properties, while invisible to the human eye, determine motion observed on its surface.
We propose an approach that estimates heterogeneous material properties of an object from a monocular video of its surface vibrations.
arXiv Detail & Related papers (2021-04-06T18:05:27Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
Deep convolutional neural networks are state-of-the-art for image deblurring.
We present a differentiable reblur model for self-supervised motion deblurring.
Our experiments demonstrate that self-supervised single image deblurring is really feasible.
arXiv Detail & Related papers (2020-02-10T20:15:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.