From Classical Machine Learning to Emerging Foundation Models: Review on Multimodal Data Integration for Cancer Research
- URL: http://arxiv.org/abs/2507.09028v1
- Date: Fri, 11 Jul 2025 21:23:21 GMT
- Title: From Classical Machine Learning to Emerging Foundation Models: Review on Multimodal Data Integration for Cancer Research
- Authors: Amgad Muneer, Muhammad Waqas, Maliazurina B Saad, Eman Showkatian, Rukhmini Bandyopadhyay, Hui Xu, Wentao Li, Joe Y Chang, Zhongxing Liao, Cara Haymaker, Luisa Solis Soto, Carol C Wu, Natalie I Vokes, Xiuning Le, Lauren A Byers, Don L Gibbons, John V Heymach, Jianjun Zhang, Jia Wu,
- Abstract summary: Foundations models (FMs) offer new avenues for discovering biomarkers, improving diagnosis, and personalizing treatment.<n>We examine emerging trends in machine learning (ML) and deep learning (DL)<n>We identify the state-of-the-art FMs, publicly available multi-modal repositories, and advanced tools and methods for data integration.
- Score: 17.42746456656653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer research is increasingly driven by the integration of diverse data modalities, spanning from genomics and proteomics to imaging and clinical factors. However, extracting actionable insights from these vast and heterogeneous datasets remains a key challenge. The rise of foundation models (FMs) -- large deep-learning models pretrained on extensive amounts of data serving as a backbone for a wide range of downstream tasks -- offers new avenues for discovering biomarkers, improving diagnosis, and personalizing treatment. This paper presents a comprehensive review of widely adopted integration strategies of multimodal data to assist advance the computational approaches for data-driven discoveries in oncology. We examine emerging trends in machine learning (ML) and deep learning (DL), including methodological frameworks, validation protocols, and open-source resources targeting cancer subtype classification, biomarker discovery, treatment guidance, and outcome prediction. This study also comprehensively covers the shift from traditional ML to FMs for multimodal integration. We present a holistic view of recent FMs advancements and challenges faced during the integration of multi-omics with advanced imaging data. We identify the state-of-the-art FMs, publicly available multi-modal repositories, and advanced tools and methods for data integration. We argue that current state-of-the-art integrative methods provide the essential groundwork for developing the next generation of large-scale, pre-trained models poised to further revolutionize oncology. To the best of our knowledge, this is the first review to systematically map the transition from conventional ML to advanced FM for multimodal data integration in oncology, while also framing these developments as foundational for the forthcoming era of large-scale AI models in cancer research.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models [59.17570021208177]
PyTDC is a machine-learning platform providing streamlined training, evaluation, and inference software for multimodal biological AI models.<n>This paper discusses the components of PyTDC's architecture and, to our knowledge, the first-of-its-kind case study on the introduced single-cell drug-target nomination ML task.
arXiv Detail & Related papers (2025-05-08T18:15:38Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - A Systematic Review of Intermediate Fusion in Multimodal Deep Learning for Biomedical Applications [0.7831774233149619]
This systematic review aims to analyze and formalize current intermediate fusion methods in biomedical applications.
We introduce a structured notation to enhance the understanding and application of these methods beyond the biomedical domain.
Our findings are intended to support researchers, healthcare professionals, and the broader deep learning community in developing more sophisticated and insightful multimodal models.
arXiv Detail & Related papers (2024-08-02T11:48:04Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
We present OpenMEDLab, an open-source platform for multi-modality foundation models.
It encapsulates solutions of pioneering attempts in prompting and fine-tuning large language and vision models for frontline clinical and bioinformatic applications.
It opens access to a group of pre-trained foundation models for various medical image modalities, clinical text, protein engineering, etc.
arXiv Detail & Related papers (2024-02-28T03:51:02Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
This work proposes Multimodal Integration of Oncology Data System (MINDS)
MINDS is a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources.
By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability.
arXiv Detail & Related papers (2023-09-30T15:44:39Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
Integrating diverse data types can improve the accuracy and reliability of cancer diagnosis and treatment.
Deep neural networks have facilitated the development of sophisticated multimodal data fusion approaches.
Recent deep learning frameworks such as Graph Neural Networks (GNNs) and Transformers have shown remarkable success in multimodal learning.
arXiv Detail & Related papers (2023-03-11T17:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.