A Method for Learning to Solve Parametric Bilevel Optimization with Coupling Constraints
- URL: http://arxiv.org/abs/2507.09050v1
- Date: Fri, 11 Jul 2025 21:48:21 GMT
- Title: A Method for Learning to Solve Parametric Bilevel Optimization with Coupling Constraints
- Authors: James Kotary, Himanshu Sharma, Ethan King, Draguna Vrabie, Ferdinando Fioretto, Jan Drgona,
- Abstract summary: This paper proposes a framework for learning to solve a broad class of challenging bilevel optimization problems.<n>The framework is illustrated on an array of synthetic bilevel programs, as well as challenging control system co-design problems.
- Score: 46.74496760711108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to Optimize (L2O) is a subfield of machine learning (ML) in which ML models are trained to solve parametric optimization problems. The general goal is to learn a fast approximator of solutions to constrained optimization problems, as a function of their defining parameters. Prior L2O methods focus almost entirely on single-level programs, in contrast to the bilevel programs, whose constraints are themselves expressed in terms of optimization subproblems. Bilevel programs have numerous important use cases but are notoriously difficult to solve, particularly under stringent time demands. This paper proposes a framework for learning to solve a broad class of challenging bilevel optimization problems, by leveraging modern techniques for differentiation through optimization problems. The framework is illustrated on an array of synthetic bilevel programs, as well as challenging control system co-design problems, showing how neural networks can be trained as efficient approximators of parametric bilevel optimization.
Related papers
- Decomposition of Difficulties in Complex Optimization Problems Using a Bilevel Approach [0.30723404270319693]
Practical optimization problems may contain different kinds of difficulties that are often not tractable if one relies on a particular optimization method.
We propose a decomposition strategy that allows us to apply two approaches at the same time on a complex optimization problem.
arXiv Detail & Related papers (2024-07-03T18:59:17Z) - A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We develop a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints.
We demonstrate its effectiveness on two well-known real-world applications.
arXiv Detail & Related papers (2024-06-14T15:59:36Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
We introduce contextual bilevel optimization (CSBO) -- a bilevel optimization framework with the lower-level problem minimizing an expectation on some contextual information and the upper-level variable.
It is important for applications such as meta-learning, personalized learning, end-to-end learning, and Wasserstein distributionally robustly optimization with side information (WDRO-SI)
arXiv Detail & Related papers (2023-10-27T23:24:37Z) - Fast Adaptive Federated Bilevel Optimization [14.579475552088692]
We propose a novel adaptive federated bilevel optimization algorithm (i.e.,AdaFBiO) to solve the distributed bilevel optimization problems.
AdaFBiO uses the unified adaptive matrices to flexibly incorporate various adaptive learning rates to update variables in both UL and LL problems.
We provide a convergence analysis framework for our AdaFBiO algorithm, and prove it needs the sample of complexity of $tildeO(epsilon-3)$ with communication complexity of $tildeO(epsilon-2)$ to obtain an $
arXiv Detail & Related papers (2022-11-02T13:55:47Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
We propose a bilevel optimization method based on Bregman Bregman functions.
We also propose an accelerated version of SBiO-BreD method (ASBiO-BreD) by using the variance-reduced technique.
arXiv Detail & Related papers (2021-07-26T16:18:43Z) - Learning to Optimize: A Primer and A Benchmark [94.29436694770953]
Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods.
This article is poised to be the first comprehensive survey and benchmark of L2O for continuous optimization.
arXiv Detail & Related papers (2021-03-23T20:46:20Z) - Learning to Optimize Under Constraints with Unsupervised Deep Neural
Networks [0.0]
We propose a machine learning (ML) method to learn how to solve a generic constrained continuous optimization problem.
In this paper, we propose an unsupervised deep learning (DL) solution for solving constrained optimization problems in real-time.
arXiv Detail & Related papers (2021-01-04T02:58:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.