CompassJudger-2: Towards Generalist Judge Model via Verifiable Rewards
- URL: http://arxiv.org/abs/2507.09104v1
- Date: Sat, 12 Jul 2025 01:34:24 GMT
- Title: CompassJudger-2: Towards Generalist Judge Model via Verifiable Rewards
- Authors: Taolin Zhang, Maosong Cao, Alexander Lam, Songyang Zhang, Kai Chen,
- Abstract summary: CompassJudger-2 is a novel generalist judge model that overcomes limitations via a task-driven, multi-domain data curation strategy.<n> CompassJudger-2 achieves superior results across multiple judge and reward benchmarks.
- Score: 72.44810390478229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the role of LLM-as-judge in evaluating large language models has gained prominence. However, current judge models suffer from narrow specialization and limited robustness, undermining their capacity for comprehensive evaluations. In this work, we present CompassJudger-2, a novel generalist judge model that overcomes these limitations via a task-driven, multi-domain data curation strategy. Central to our approach is supervising judgment tasks with verifiable rewards, guiding intrinsic critical reasoning through rejection sampling to foster robust, generalizable judgment capabilities. We introduce a refined learning objective with margin policy gradient loss to enhance performance. Empirically, CompassJudger-2 achieves superior results across multiple judge and reward benchmarks, and our 7B model demonstrates competitive judgment accuracy with significantly larger models like DeepSeek-V3 and Qwen3-235B-A22B. Additionally, we propose JudgerBenchV2, a comprehensive benchmark evaluating cross-domain judgment accuracy and rank consistency to standardize judge model evaluation. These contributions advance robust, scalable LLM judgment and establish new performance and evaluation standards.
Related papers
- J4R: Learning to Judge with Equivalent Initial State Group Relative Policy Optimization [69.23273504123941]
We train judges to be robust to positional biases that arise in more complex evaluation settings.<n>We introduce ReasoningJudgeBench, a benchmark that evaluates judges in diverse reasoning settings not covered by prior work.<n>We train Judge for Reasoning (J4R), a 7B judge trained with EIS-GRPO that outperforms GPT-4o and the next best small judge by 6.7% and 9%.
arXiv Detail & Related papers (2025-05-19T16:50:35Z) - JudgeLRM: Large Reasoning Models as a Judge [65.14085339820795]
We investigate whether Large Language Models (LLMs) judges truly benefit from enhanced reasoning capabilities.<n>We introduce JudgeLRM, a family of judgment-oriented LLMs trained using reinforcement learning (RL) with judge-wise, outcome-driven rewards.
arXiv Detail & Related papers (2025-03-31T02:18:51Z) - DAFE: LLM-Based Evaluation Through Dynamic Arbitration for Free-Form Question-Answering [12.879551933541345]
We propose the Dynamic Arbitration Framework for Evaluation (DAFE) to evaluate large language models.<n>DAFE employs two primary LLM-as-judges and engages a third arbitrator only in cases of disagreements.<n>We show DAFE's ability to provide consistent, scalable, and resource-efficient assessments.
arXiv Detail & Related papers (2025-03-11T15:29:55Z) - Know Thy Judge: On the Robustness Meta-Evaluation of LLM Safety Judges [3.168632659778101]
We highlight two critical challenges that are typically overlooked: (i) evaluations in the wild where factors like prompt sensitivity and distribution shifts can affect performance and (ii) adversarial attacks that target the judge.<n>We show that small changes such as the style of the model output can lead to jumps of up to 0.24 in the false negative rate on the same dataset, whereas adversarial attacks on the model generation can fool some judges into misclassifying 100% of harmful generations as safe ones.
arXiv Detail & Related papers (2025-03-06T14:24:12Z) - Judge as A Judge: Improving the Evaluation of Retrieval-Augmented Generation through the Judge-Consistency of Large Language Models [68.92020689188887]
Retrieval-Augmented Generation (RAG) has proven its effectiveness in alleviating hallucinations for Large Language Models (LLMs)<n>Existing automated evaluation metrics cannot fairly evaluate the outputs generated by RAG models during training and evaluation.<n>This paper introduces the Judge-Consistency (ConsJudge) method, which aims to enhance LLMs to generate more accurate evaluations for RAG models.
arXiv Detail & Related papers (2025-02-26T04:50:43Z) - JudgeBench: A Benchmark for Evaluating LLM-based Judges [61.048125269475854]
JudgeBench is a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding.<n>Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks.
arXiv Detail & Related papers (2024-10-16T17:58:19Z) - Direct Judgement Preference Optimization [66.83088028268318]
We train large language models (LLMs) as generative judges to evaluate and critique other models' outputs.
We employ three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective.
Our model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
arXiv Detail & Related papers (2024-09-23T02:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.