XiChen: An observation-scalable fully AI-driven global weather forecasting system with 4D variational knowledge
- URL: http://arxiv.org/abs/2507.09202v1
- Date: Sat, 12 Jul 2025 08:46:58 GMT
- Title: XiChen: An observation-scalable fully AI-driven global weather forecasting system with 4D variational knowledge
- Authors: Wuxin Wang, Weicheng Ni, Lilan Huang, Tao Hao, Ben Fei, Shuo Ma, Taikang Yuan, Yanlai Zhao, Kefeng Deng, Xiaoyong Li, Boheng Duan, Lei Bai, Kaijun Ren,
- Abstract summary: XiChen is the first observation-scalable fully AI-driven global weather forecasting system.<n>XiChen's entire pipeline, from Data Assimilation (DA) to medium-range forecasting, can be accomplished within only 17 seconds.
- Score: 7.915120865599803
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in Artificial Intelligence (AI) demonstrate significant potential to revolutionize weather forecasting. However, most AI-driven models rely on Numerical Weather Prediction (NWP) systems for initial condition preparation, which often consumes hours on supercomputers. Here we introduce XiChen, the first observation-scalable fully AI-driven global weather forecasting system, whose entire pipeline, from Data Assimilation (DA) to medium-range forecasting, can be accomplished within only 17 seconds. XiChen is built upon a foundation model that is pre-trained for weather forecasting. Meanwhile, this model is subsequently fine-tuned to serve as both observation operators and DA models, thereby scalably assimilating conventional and raw satellite observations. Furthermore, the integration of four-dimensional variational knowledge ensures that XiChen's DA and medium-range forecasting accuracy rivals that of operational NWP systems, amazingly achieving a skillful forecasting lead time exceeding 8.25 days. These findings demonstrate that XiChen holds strong potential toward fully AI-driven weather forecasting independent of NWP systems.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - A Benchmark for AI-based Weather Data Assimilation [10.100157158477145]
We propose DABench, a benchmark constructed by simulated observations, real-world observations, and ERA5 reanalysis.
Our experimental results demonstrate that the end-to-end weather forecasting system, integrating 4DVarFormerV2 and Sformer, can assimilate real-world observations.
The proposed DABench will significantly advance research in AI-based DA, AI-based weather forecasting, and related domains.
arXiv Detail & Related papers (2024-08-21T08:50:19Z) - FuXi Weather: A data-to-forecast machine learning system for global weather [13.052716094161886]
FuXi Weather is a machine learning weather forecasting system that assimilates data from multiple satellites.
FuXi Weather consistently outperforms ECMWF HRES in observation-sparse regions, such as central Africa.
arXiv Detail & Related papers (2024-08-10T07:42:01Z) - Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weather is an end-to-end data-driven weather prediction system.
It ingests raw observations and outputs global gridded forecasts and local station forecasts.
It can be optimised end-to-end to maximise performance over quantities of interest.
arXiv Detail & Related papers (2024-03-30T16:41:24Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.