PPJudge: Towards Human-Aligned Assessment of Artistic Painting Process
- URL: http://arxiv.org/abs/2507.09242v2
- Date: Tue, 29 Jul 2025 04:36:43 GMT
- Title: PPJudge: Towards Human-Aligned Assessment of Artistic Painting Process
- Authors: Shiqi Jiang, Xinpeng Li, Xi Mao, Changbo Wang, Chenhui Li,
- Abstract summary: We propose a novel framework for human-aligned assessment of painting processes.<n> Specifically, we introduce the Painting Process Assessment dataset (PPAD), the first large-scale dataset comprising real and synthetic painting process images.<n>We also present PPJudge, a Transformer-based model enhanced with temporally-aware positional encoding.
- Score: 15.405025452748585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artistic image assessment has become a prominent research area in computer vision. In recent years, the field has witnessed a proliferation of datasets and methods designed to evaluate the aesthetic quality of paintings. However, most existing approaches focus solely on static final images, overlooking the dynamic and multi-stage nature of the artistic painting process. To address this gap, we propose a novel framework for human-aligned assessment of painting processes. Specifically, we introduce the Painting Process Assessment Dataset (PPAD), the first large-scale dataset comprising real and synthetic painting process images, annotated by domain experts across eight detailed attributes. Furthermore, we present PPJudge (Painting Process Judge), a Transformer-based model enhanced with temporally-aware positional encoding and a heterogeneous mixture-of-experts architecture, enabling effective assessment of the painting process. Experimental results demonstrate that our method outperforms existing baselines in accuracy, robustness, and alignment with human judgment, offering new insights into computational creativity and art education.
Related papers
- Vectorized Region Based Brush Strokes for Artistic Rendering [3.5297361401370044]
Recent stroke-based painting systems focus on capturing stroke details by predicting and iteratively refining stroke parameters.<n>These methods often struggle to produce stroke compositions that align with artistic principles and intent.<n>We propose an image-to-painting method that (i) facilitates semantic guidance for brush strokes in targeted regions, (ii) computes the brush stroke parameters, and (iii) establishes a sequence among segments and strokes to sequentially render the final painting.
arXiv Detail & Related papers (2025-06-11T17:45:36Z) - APDDv2: Aesthetics of Paintings and Drawings Dataset with Artist Labeled Scores and Comments [45.57709215036539]
We introduce the Aesthetics Paintings and Drawings dataset (APDD), the first comprehensive collection of paintings encompassing 24 distinct artistic categories and 10 aesthetic attributes.
APDDv2 boasts an expanded image corpus and improved annotation quality, featuring detailed language comments.
We present an updated version of the Art Assessment Network for Specific Painting Styles, denoted as ArtCLIP. Experimental validation demonstrates the superior performance of this revised model in the realm of aesthetic evaluation, surpassing its predecessor in accuracy and efficacy.
arXiv Detail & Related papers (2024-11-13T11:46:42Z) - GalleryGPT: Analyzing Paintings with Large Multimodal Models [64.98398357569765]
Artwork analysis is important and fundamental skill for art appreciation, which could enrich personal aesthetic sensibility and facilitate the critical thinking ability.
Previous works for automatically analyzing artworks mainly focus on classification, retrieval, and other simple tasks, which is far from the goal of AI.
We introduce a superior large multimodal model for painting analysis composing, dubbed GalleryGPT, which is slightly modified and fine-tuned based on LLaVA architecture.
arXiv Detail & Related papers (2024-08-01T11:52:56Z) - Paintings and Drawings Aesthetics Assessment with Rich Attributes for Various Artistic Categories [47.705077586687196]
The Aesthetics of Paintings and Drawings dataset comprises a total of 4985 images, with an annotation count exceeding 31100 entries.
The construction of APDD received active participation from 28 professional artists worldwide, along with dozens of students specializing in the field of art.
The final APDD dataset comprises a total of 4985 images, with an annotation count exceeding 31100 entries.
arXiv Detail & Related papers (2024-05-05T16:05:56Z) - Reimagining Reality: A Comprehensive Survey of Video Inpainting
Techniques [6.36998581871295]
Video inpainting is a process that restores or fills in missing or corrupted portions of video sequences with plausible content.
Our study deconstructs major techniques, their underpinning theories, and their effective applications.
We employ a human-centric approach to assess visual quality, enlisting a panel of annotators to evaluate the output of different video inpainting techniques.
arXiv Detail & Related papers (2024-01-31T14:41:40Z) - Interactive Neural Painting [66.9376011879115]
This paper proposes the first approach for Interactive Neural Painting (NP)
We propose I-Paint, a novel method based on a conditional transformer Variational AutoEncoder (VAE) architecture with a two-stage decoder.
Our experiments show that our approach provides good stroke suggestions and compares favorably to the state of the art.
arXiv Detail & Related papers (2023-07-31T07:02:00Z) - Learning to Evaluate the Artness of AI-generated Images [64.48229009396186]
ArtScore is a metric designed to evaluate the degree to which an image resembles authentic artworks by artists.
We employ pre-trained models for photo and artwork generation, resulting in a series of mixed models.
This dataset is then employed to train a neural network that learns to estimate quantized artness levels of arbitrary images.
arXiv Detail & Related papers (2023-05-08T17:58:27Z) - Perceptual Artifacts Localization for Inpainting [60.5659086595901]
We propose a new learning task of automatic segmentation of inpainting perceptual artifacts.
We train advanced segmentation networks on a dataset to reliably localize inpainting artifacts within inpainted images.
We also propose a new evaluation metric called Perceptual Artifact Ratio (PAR), which is the ratio of objectionable inpainted regions to the entire inpainted area.
arXiv Detail & Related papers (2022-08-05T18:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.