Psychology-Driven Enhancement of Humour Translation
- URL: http://arxiv.org/abs/2507.09259v1
- Date: Sat, 12 Jul 2025 11:44:41 GMT
- Title: Psychology-Driven Enhancement of Humour Translation
- Authors: Yuchen Su, Yonghua Zhu, Yang Chen, Diana Benavides-Prado, Michael Witbrock,
- Abstract summary: We propose a psychology-inspired Humour Decomposition Mechanism (HDM) to imitate the ability of the human thought process.<n>Our method significantly improves the quality of humour translation, yielding average gains of 7.75% in humour, 2.81% in fluency, and 6.13% in coherence of the generated text.
- Score: 15.348888125504658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humour translation plays a vital role as a bridge between different cultures, fostering understanding and communication. Although most existing Large Language Models (LLMs) are capable of general translation tasks, these models still struggle with humour translation, which is especially reflected through linguistic interference and lacking humour in translated text. In this paper, we propose a psychology-inspired Humour Decomposition Mechanism (HDM) that utilises Chain-of-Thought (CoT) to imitate the ability of the human thought process, stimulating LLMs to optimise the readability of translated humorous texts. Moreover, we integrate humour theory in HDM to further enhance the humorous elements in the translated text. Our automatic evaluation experiments on open-source humour datasets demonstrate that our method significantly improves the quality of humour translation, yielding average gains of 7.75\% in humour, 2.81\% in fluency, and 6.13\% in coherence of the generated text.
Related papers
- From Punchlines to Predictions: A Metric to Assess LLM Performance in Identifying Humor in Stand-Up Comedy [6.124881326867511]
In light of the widespread adoption of Large Language Models, the intersection of humor and AI has become no laughing matter.<n>In this study, we assess the ability of models in accurately identifying humorous quotes from a stand-up comedy transcript.<n>We propose a novel humor detection metric designed to evaluate LLMs amongst various prompts on their capability to extract humorous punchlines.
arXiv Detail & Related papers (2025-04-12T02:19:53Z) - Deceptive Humor: A Synthetic Multilingual Benchmark Dataset for Bridging Fabricated Claims with Humorous Content [0.0]
We present the Deceptive Humor dataset (DHD) a collection of humor-infused comments derived from fabricated claims.<n>Each entry is labeled with a Satire Level (from 1 for subtle satire to 3 for overt satire) and categorized into five humor types.<n>The dataset spans English, Telugu, Hindi, Kannada, Tamil, and their code-mixed forms, making it a valuable resource for multilingual analysis.
arXiv Detail & Related papers (2025-03-20T10:58:02Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
We propose a novel Iterative Bilingual Understanding Translation method based on the cross-lingual capabilities of large language models (LLMs)<n>The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately.<n>The proposed IBUT outperforms several strong comparison methods.
arXiv Detail & Related papers (2024-10-16T13:21:46Z) - Can Pre-trained Language Models Understand Chinese Humor? [74.96509580592004]
This paper is the first work that systematically investigates the humor understanding ability of pre-trained language models (PLMs)
We construct a comprehensive Chinese humor dataset, which can fully meet all the data requirements of the proposed evaluation framework.
Our empirical study on the Chinese humor dataset yields some valuable observations, which are of great guiding value for future optimization of PLMs in humor understanding and generation.
arXiv Detail & Related papers (2024-07-04T18:13:38Z) - Getting Serious about Humor: Crafting Humor Datasets with Unfunny Large Language Models [27.936545041302377]
Large language models (LLMs) can generate synthetic data for humor detection via editing texts.
We benchmark LLMs on an existing human dataset and show that current LLMs display an impressive ability to 'unfun' jokes.
We extend our approach to a code-mixed English-Hindi humor dataset, where we find that GPT-4's synthetic data is highly rated by bilingual annotators.
arXiv Detail & Related papers (2024-02-23T02:58:12Z) - OxfordTVG-HIC: Can Machine Make Humorous Captions from Images? [27.899718595182172]
We present OxfordTVG-HIC (Humorous Image Captions), a large-scale dataset for humour generation and understanding.
OxfordTVG-HIC features a wide range of emotional and semantic diversity resulting in out-of-context examples.
We show how OxfordTVG-HIC can be leveraged for evaluating the humour of a generated text.
arXiv Detail & Related papers (2023-07-21T14:58:44Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios.
This work proposes the MAPS framework, which stands for Multi-Aspect Prompting and Selection.
We employ a selection mechanism based on quality estimation to filter out noisy and unhelpful knowledge.
arXiv Detail & Related papers (2023-05-06T19:03:12Z) - ExPUNations: Augmenting Puns with Keywords and Explanations [88.58174386894913]
We augment an existing dataset of puns with detailed crowdsourced annotations of keywords.
This is the first humor dataset with such extensive and fine-grained annotations specifically for puns.
We propose two tasks: explanation generation to aid with pun classification and keyword-conditioned pun generation.
arXiv Detail & Related papers (2022-10-24T18:12:02Z) - Towards Multimodal Prediction of Spontaneous Humour: A Novel Dataset and First Results [84.37263300062597]
Humor is a substantial element of human social behavior, affect, and cognition.
Current methods of humor detection have been exclusively based on staged data, making them inadequate for "real-world" applications.
We contribute to addressing this deficiency by introducing the novel Passau-Spontaneous Football Coach Humor dataset, comprising about 11 hours of recordings.
arXiv Detail & Related papers (2022-09-28T17:36:47Z) - Federated Learning with Diversified Preference for Humor Recognition [40.89453484353102]
We propose the FedHumor approach to recognize humorous text contents in a personalized manner through federated learning (FL)
Experiments demonstrate significant advantages of FedHumor in recognizing humor contents accurately for people with diverse humor preferences compared to 9 state-of-the-art humor recognition approaches.
arXiv Detail & Related papers (2020-12-03T03:24:24Z) - Predicting the Humorousness of Tweets Using Gaussian Process Preference
Learning [56.18809963342249]
We present a probabilistic approach that learns to rank and rate the humorousness of short texts by exploiting human preference judgments and automatically sourced linguistic annotations.
We report system performance for the campaign's two subtasks, humour detection and funniness score prediction, and discuss some issues arising from the conversion between the numeric scores used in the HAHA@IberLEF 2019 data and the pairwise judgment annotations required for our method.
arXiv Detail & Related papers (2020-08-03T13:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.