La-Proteina: Atomistic Protein Generation via Partially Latent Flow Matching
- URL: http://arxiv.org/abs/2507.09466v1
- Date: Sun, 13 Jul 2025 03:01:50 GMT
- Title: La-Proteina: Atomistic Protein Generation via Partially Latent Flow Matching
- Authors: Tomas Geffner, Kieran Didi, Zhonglin Cao, Danny Reidenbach, Zuobai Zhang, Christian Dallago, Emine Kucukbenli, Karsten Kreis, Arash Vahdat,
- Abstract summary: We introduce La-Proteina for atomistic protein design based on a novel partially latent protein representation.<n>La-Proteina achieves state-of-the-art performance on multiple generation benchmarks, including all-atom co-designability, diversity, and structural validity.<n>La-Proteina is able to generate co-designable proteins of up to 800 residues, a regime where most baselines collapse and fail to produce valid samples.
- Score: 36.32031583420137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many generative models for de novo protein structure design have emerged. Yet, only few tackle the difficult task of directly generating fully atomistic structures jointly with the underlying amino acid sequence. This is challenging, for instance, because the model must reason over side chains that change in length during generation. We introduce La-Proteina for atomistic protein design based on a novel partially latent protein representation: coarse backbone structure is modeled explicitly, while sequence and atomistic details are captured via per-residue latent variables of fixed dimensionality, thereby effectively side-stepping challenges of explicit side-chain representations. Flow matching in this partially latent space then models the joint distribution over sequences and full-atom structures. La-Proteina achieves state-of-the-art performance on multiple generation benchmarks, including all-atom co-designability, diversity, and structural validity, as confirmed through detailed structural analyses and evaluations. Notably, La-Proteina also surpasses previous models in atomistic motif scaffolding performance, unlocking critical atomistic structure-conditioned protein design tasks. Moreover, La-Proteina is able to generate co-designable proteins of up to 800 residues, a regime where most baselines collapse and fail to produce valid samples, demonstrating La-Proteina's scalability and robustness.
Related papers
- All-atom inverse protein folding through discrete flow matching [11.47007092758602]
We present ADFLIP (All-atom Discrete FLow matching Inverse Protein folding), a generative model for designing protein sequences conditioned on all-atom structural contexts.<n>Our model achieves state-of-the-art performance in single-structure and multi-structure inverse folding tasks, demonstrating excellent potential for all-atom protein design.
arXiv Detail & Related papers (2025-07-04T11:57:38Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
We introduce FoldFlow-2, a novel sequence-conditioned flow matching model for protein structure generation.<n>We train FoldFlow-2 at scale on a new dataset that is an order of magnitude larger than PDB datasets of prior works.<n>We empirically observe that FoldFlow-2 outperforms previous state-of-the-art protein structure-based generative models.
arXiv Detail & Related papers (2024-05-30T17:53:50Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
We propose a hierarchical training paradigm (HTP) for the antibody sequence-structure co-design.
HTP consists of four levels of training stages, each corresponding to a specific protein modality.
Empirical experiments show that HTP sets the new state-of-the-art performance in the co-design problem.
arXiv Detail & Related papers (2023-10-30T02:39:15Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - Generating Novel, Designable, and Diverse Protein Structures by
Equivariantly Diffusing Oriented Residue Clouds [0.0]
Structure-based protein design aims to find structures that are designable, novel, and diverse.
Generative models provide a compelling alternative, by implicitly learning the low-dimensional structure of complex data.
We develop Genie, a generative model of protein structures that performs discrete-time diffusion using a cloud of oriented reference frames in 3D space.
arXiv Detail & Related papers (2023-01-29T16:44:19Z) - Protein Sequence and Structure Co-Design with Equivariant Translation [19.816174223173494]
Existing approaches generate both protein sequence and structure using either autoregressive models or diffusion models.
We propose a new approach capable of protein sequence and structure co-design, which iteratively translates both protein sequence and structure into the desired state.
Our model consists of a trigonometry-aware encoder that reasons geometrical constraints and interactions from context features.
All protein amino acids are updated in one shot in each translation step, which significantly accelerates the inference process.
arXiv Detail & Related papers (2022-10-17T06:00:12Z) - Protein structure generation via folding diffusion [16.12124223972183]
We present a new diffusion-based generative model that designs protein backbone structures.
We generate new structures by denoising from a random, unfolded state towards a stable folded structure.
As a useful resource, we release the first open-source and trained models for protein structure diffusion.
arXiv Detail & Related papers (2022-09-30T17:35:53Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models [3.5450828190071646]
An important task in bioengineering is designing proteins with specific 3D structures and chemical properties which enable targeted functions.
We introduce a generative model of both protein structure and sequence that can operate at significantly larger scales than previous molecular generative modeling approaches.
arXiv Detail & Related papers (2022-05-26T16:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.