GenAI-based Multi-Agent Reinforcement Learning towards Distributed Agent Intelligence: A Generative-RL Agent Perspective
- URL: http://arxiv.org/abs/2507.09495v1
- Date: Sun, 13 Jul 2025 05:02:43 GMT
- Title: GenAI-based Multi-Agent Reinforcement Learning towards Distributed Agent Intelligence: A Generative-RL Agent Perspective
- Authors: Hang Wang, Junshan Zhang,
- Abstract summary: We argue for a transformative paradigm shift from reactive to proactive multi-agent intelligence through generative AI-based reinforcement learning.<n>Rather than responding to immediate observations, generative-RL agents can model environment evolution, predict other agents' behaviors, generate coordinated action sequences, and engage in strategic reasoning accounting for long-term dynamics.
- Score: 35.589506360952925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent reinforcement learning faces fundamental challenges that conventional approaches have failed to overcome: exponentially growing joint action spaces, non-stationary environments where simultaneous learning creates moving targets, and partial observability that constrains coordination. Current methods remain reactive, employing stimulus-response mechanisms that fail when facing novel scenarios. We argue for a transformative paradigm shift from reactive to proactive multi-agent intelligence through generative AI-based reinforcement learning. This position advocates reconceptualizing agents not as isolated policy optimizers, but as sophisticated generative models capable of synthesizing complex multi-agent dynamics and making anticipatory decisions based on predictive understanding of future interactions. Rather than responding to immediate observations, generative-RL agents can model environment evolution, predict other agents' behaviors, generate coordinated action sequences, and engage in strategic reasoning accounting for long-term dynamics. This approach leverages pattern recognition and generation capabilities of generative AI to enable proactive decision-making, seamless coordination through enhanced communication, and dynamic adaptation to evolving scenarios. We envision this paradigm shift will unlock unprecedented possibilities for distributed intelligence, moving beyond individual optimization toward emergent collective behaviors representing genuine collaborative intelligence. The implications extend across autonomous systems, robotics, and human-AI collaboration, promising solutions to coordination challenges intractable under traditional reactive frameworks.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Emergence of Roles in Robotic Teams with Model Sharing and Limited Communication [0.0]
We present a reinforcement learning strategy for use in multi-agent foraging systems in which the learning is centralised to a single agent.<n>This approach aims to significantly reduce the computational and energy demands compared to approaches such as MARL and centralised learning models.
arXiv Detail & Related papers (2025-05-01T14:05:46Z) - PolicyEvol-Agent: Evolving Policy via Environment Perception and Self-Awareness with Theory of Mind [9.587070290189507]
PolicyEvol-Agent is a comprehensive framework characterized by systematically acquiring intentions of others.<n>PolicyEvol-Agent integrates a range of cognitive operations with Theory of Mind alongside internal and external perspectives.
arXiv Detail & Related papers (2025-04-20T06:43:23Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Episodic Future Thinking Mechanism for Multi-agent Reinforcement Learning [2.992602379681373]
We introduce an episodic future thinking (EFT) mechanism for a reinforcement learning (RL) agent.
We first develop a multi-character policy that captures diverse characters with an ensemble of heterogeneous policies.
Once the character is inferred, the agent predicts the upcoming actions of target agents and simulates the potential future scenario.
arXiv Detail & Related papers (2024-10-22T19:12:42Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.
We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.
CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - An active inference model of collective intelligence [0.0]
This paper posits a minimal agent-based model that simulates the relationship between local individual-level interaction and collective intelligence.
Results show that stepwise cognitive transitions increase system performance by providing complementary mechanisms for alignment between agents' local and global optima.
arXiv Detail & Related papers (2021-04-02T14:32:01Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
We propose a reinforcement learning-based framework for learning latent representations of an agent's policy.
We show that our approach outperforms the alternatives and learns to influence the other agent.
arXiv Detail & Related papers (2020-11-12T19:04:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.