Covering a Few Submodular Constraints and Applications
- URL: http://arxiv.org/abs/2507.09879v1
- Date: Mon, 14 Jul 2025 03:32:42 GMT
- Title: Covering a Few Submodular Constraints and Applications
- Authors: Tanvi Bajpai, Chandra Chekuri, Pooja Kulkarni,
- Abstract summary: We consider the problem of covering multiple submodular constraints.<n>For covering multiple submodular constraints we obtain a randomized bi-criteria approximation that for any given integer $alpha ge 1$ outputs a set $S$ such that $f_i(S) ge$ $(1-1/ealpha -epsilon)b_i$ for each $i in [r]$ and $mathbbE[c(S)] le (1+epsilon)alpha cdot sfOPT$.
- Score: 1.649938899766112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of covering multiple submodular constraints. Given a finite ground set $N$, a cost function $c: N \rightarrow \mathbb{R}_+$, $r$ monotone submodular functions $f_1,f_2,\ldots,f_r$ over $N$ and requirements $b_1,b_2,\ldots,b_r$ the goal is to find a minimum cost subset $S \subseteq N$ such that $f_i(S) \ge b_i$ for $1 \le i \le r$. When $r=1$ this is the well-known Submodular Set Cover problem. Previous work \cite{chekuri2022covering} considered the setting when $r$ is large and developed bi-criteria approximation algorithms, and approximation algorithms for the important special case when each $f_i$ is a weighted coverage function. These are fairly general models and capture several concrete and interesting problems as special cases. The approximation ratios for these problem are at least $\Omega(\log r)$ which is unavoidable when $r$ is part of the input. In this paper, motivated by some recent applications, we consider the problem when $r$ is a \emph{fixed constant} and obtain two main results. For covering multiple submodular constraints we obtain a randomized bi-criteria approximation algorithm that for any given integer $\alpha \ge 1$ outputs a set $S$ such that $f_i(S) \ge$ $(1-1/e^\alpha -\epsilon)b_i$ for each $i \in [r]$ and $\mathbb{E}[c(S)] \le (1+\epsilon)\alpha \cdot \sf{OPT}$. Second, when the $f_i$ are weighted coverage functions from a deletion-closed set system we obtain a $(1+\epsilon)$ $(\frac{e}{e-1})$ $(1+\beta)$-approximation where $\beta$ is the approximation ratio for the underlying set cover instances via the natural LP. These results show that one can obtain nearly as good an approximation for any fixed $r$ as what one would achieve for $r=1$. We mention some applications that follow easily from these general results and anticipate more in the future.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions [54.54897832889028]
We show that for any $K$, there is a universal set" $U subset [n]$ of size independent of $n$, such that for any $Q$ and any row $i$, the large attention scores $A_i,j$ in row $i$ of $A$ all have $jin U$.
We empirically show the benefits of our scheme for vision transformers, showing how to train new models that use our universal set while training as well.
arXiv Detail & Related papers (2024-10-07T19:47:13Z) - Distribution-Independent Regression for Generalized Linear Models with
Oblivious Corruptions [49.69852011882769]
We show the first algorithms for the problem of regression for generalized linear models (GLMs) in the presence of additive oblivious noise.
We present an algorithm that tackles newthis problem in its most general distribution-independent setting.
This is the first newalgorithmic result for GLM regression newwith oblivious noise which can handle more than half the samples being arbitrarily corrupted.
arXiv Detail & Related papers (2023-09-20T21:41:59Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - One-pass additive-error subset selection for $\ell_{p}$ subspace
approximation [6.186553186139257]
We consider the problem of subset selection for $ell_p$ subspace approximation.
We give a one-pass subset selection with an additive approximation guarantee for $ell_p$ subspace approximation.
arXiv Detail & Related papers (2022-04-26T04:51:36Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Optimal SQ Lower Bounds for Learning Halfspaces with Massart Noise [9.378684220920562]
tightest statistical query (SQ) lower bounds for learnining halfspaces in the presence of Massart noise.
We show that for arbitrary $eta in [0,1/2]$ every SQ algorithm achieving misclassification error better than $eta$ requires queries of superpolynomial accuracy.
arXiv Detail & Related papers (2022-01-24T17:33:19Z) - Locally Private $k$-Means Clustering with Constant Multiplicative
Approximation and Near-Optimal Additive Error [10.632986841188]
We bridge the gap between the exponents of $n$ in the upper and lower bounds on the additive error with two new algorithms.
It is possible to solve the locally private $k$-means problem in a constant number of rounds with constant factor multiplicative approximation.
arXiv Detail & Related papers (2021-05-31T14:41:40Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Sets Clustering [25.358415142404752]
We prove that a core-set of $O(logn)$ sets always exists, and can be computed in $O(nlogn)$ time.
Applying an inefficient but optimal algorithm on this coreset allows us to obtain the first PTAS ($1+varepsilon$ approximation) for the sets-$k$-means problem.
Open source code and experimental results for document classification and facility locations are also provided.
arXiv Detail & Related papers (2020-03-09T13:30:30Z) - A closer look at the approximation capabilities of neural networks [6.09170287691728]
A feedforward neural network with one hidden layer is able to approximate any continuous function $f$ to any given approximation threshold $varepsilon$.
We show that this uniform approximation property still holds even under seemingly strong conditions imposed on the weights.
arXiv Detail & Related papers (2020-02-16T04:58:43Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.