Uncertainty Quantification for Incomplete Multi-View Data Using Divergence Measures
- URL: http://arxiv.org/abs/2507.09980v1
- Date: Mon, 14 Jul 2025 06:55:32 GMT
- Title: Uncertainty Quantification for Incomplete Multi-View Data Using Divergence Measures
- Authors: Zhipeng Xue, Yan Zhang, Ming Li, Chun Li, Yue Liu, Fei Yu,
- Abstract summary: KPHD-Net, based on H"older divergence, is proposed for multi-view classification and clustering tasks.<n>Our theoretical analysis demonstrates that Proper H"older divergence offers a more effective measure of distribution discrepancies.<n>Extensive experiments show that the proposed KPHD-Net outperforms the current state-of-the-art methods in both classification and clustering tasks.
- Score: 16.7647980166695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing multi-view classification and clustering methods typically improve task accuracy by leveraging and fusing information from different views. However, ensuring the reliability of multi-view integration and final decisions is crucial, particularly when dealing with noisy or corrupted data. Current methods often rely on Kullback-Leibler (KL) divergence to estimate uncertainty of network predictions, ignoring domain gaps between different modalities. To address this issue, KPHD-Net, based on H\"older divergence, is proposed for multi-view classification and clustering tasks. Generally, our KPHD-Net employs a variational Dirichlet distribution to represent class probability distributions, models evidences from different views, and then integrates it with Dempster-Shafer evidence theory (DST) to improve uncertainty estimation effects. Our theoretical analysis demonstrates that Proper H\"older divergence offers a more effective measure of distribution discrepancies, ensuring enhanced performance in multi-view learning. Moreover, Dempster-Shafer evidence theory, recognized for its superior performance in multi-view fusion tasks, is introduced and combined with the Kalman filter to provide future state estimations. This integration further enhances the reliability of the final fusion results. Extensive experiments show that the proposed KPHD-Net outperforms the current state-of-the-art methods in both classification and clustering tasks regarding accuracy, robustness, and reliability, with theoretical guarantees.
Related papers
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.076966572539547]
This paper introduces a novel algorithm based on H"older Divergence (HD) to enhance the reliability of multi-view learning.<n>Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result.<n>Mathematically, HD proves to better measure the distance'' between real data distribution and predictive distribution of the model.
arXiv Detail & Related papers (2024-10-29T04:29:44Z) - Evidential Deep Partial Multi-View Classification With Discount Fusion [24.139495744683128]
We propose a novel framework called Evidential Deep Partial Multi-View Classification (EDP-MVC)
We use K-means imputation to address missing views, creating a complete set of multi-view data.
The potential conflicts and uncertainties within this imputed data can affect the reliability of downstream inferences.
arXiv Detail & Related papers (2024-08-23T14:50:49Z) - ELFNet: Evidential Local-global Fusion for Stereo Matching [17.675146012208124]
We introduce the textbfEvidential textbfLocal-global textbfFusion (ELF) framework for stereo matching.
It endows both uncertainty estimation and confidence-aware fusion with trustworthy heads.
arXiv Detail & Related papers (2023-08-01T15:51:04Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Uncertainty Estimation for Multi-view Data: The Power of Seeing the
Whole Picture [5.868139834982011]
Uncertainty estimation is essential to make neural networks trustworthy in real-world applications.
We propose a new multi-view classification framework for better uncertainty estimation and out-of-domain sample detection.
arXiv Detail & Related papers (2022-10-06T04:47:51Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.