User Long-Term Multi-Interest Retrieval Model for Recommendation
- URL: http://arxiv.org/abs/2507.10097v1
- Date: Mon, 14 Jul 2025 09:32:26 GMT
- Title: User Long-Term Multi-Interest Retrieval Model for Recommendation
- Authors: Yue Meng, Cheng Guo, Xiaohui Hu, Honghu Deng, Yi Cao, Tong Liu, Bo Zheng,
- Abstract summary: We propose a new framework named User Long-term Multi-Interest Retrieval Model(ULIM), which enables thousand-scale behavior modeling in retrieval stages.<n>We show that ULIM achieves substantial improvement over state-of-the-art methods, and brings 5.54% clicks, 11.01% orders and 4.03% GMV lift for Taobaomiaosha, a notable mini-app of Taobao.
- Score: 20.2928687653132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User behavior sequence modeling, which captures user interest from rich historical interactions, is pivotal for industrial recommendation systems. Despite breakthroughs in ranking-stage models capable of leveraging ultra-long behavior sequences with length scaling up to thousands, existing retrieval models remain constrained to sequences of hundreds of behaviors due to two main challenges. One is strict latency budget imposed by real-time service over large-scale candidate pool. The other is the absence of target-aware mechanisms and cross-interaction architectures, which prevent utilizing ranking-like techniques to simplify long sequence modeling. To address these limitations, we propose a new framework named User Long-term Multi-Interest Retrieval Model(ULIM), which enables thousand-scale behavior modeling in retrieval stages. ULIM includes two novel components: 1)Category-Aware Hierarchical Dual-Interest Learning partitions long behavior sequences into multiple category-aware subsequences representing multi-interest and jointly optimizes long-term and short-term interests within specific interest cluster. 2)Pointer-Enhanced Cascaded Category-to-Item Retrieval introduces Pointer-Generator Interest Network(PGIN) for next-category prediction, followed by next-item retrieval upon the top-K predicted categories. Comprehensive experiments on Taobao dataset show that ULIM achieves substantial improvement over state-of-the-art methods, and brings 5.54% clicks, 11.01% orders and 4.03% GMV lift for Taobaomiaosha, a notable mini-app of Taobao.
Related papers
- STAR-Rec: Making Peace with Length Variance and Pattern Diversity in Sequential Recommendation [61.320991769685065]
STAR-Rec is a novel architecture that combines preference-aware attention and state-space modeling.<n>We show that STAR-Rec consistently outperforms state-of-the-art sequential recommendation methods.
arXiv Detail & Related papers (2025-05-06T12:40:38Z) - Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
Click-through Rate (CTR) prediction is crucial for online personalization platforms.<n>Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction.<n>We propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN)
arXiv Detail & Related papers (2024-11-22T15:29:05Z) - Multi-Grained Preference Enhanced Transformer for Multi-Behavior Sequential Recommendation [29.97854124851886]
Sequential recommendation aims to predict the next purchasing item according to users' dynamic preference learned from their historical user-item interactions.<n>Existing methods only model heterogeneous multi-behavior dependencies at behavior-level or item-level, and modelling interaction-level dependencies is still a challenge.<n>We propose a Multi-Grained Preference enhanced Transformer framework (M-GPT) to tackle these challenges.
arXiv Detail & Related papers (2024-11-19T02:45:17Z) - Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.<n>A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.<n>We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.<n>We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.<n>Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - TWIN V2: Scaling Ultra-Long User Behavior Sequence Modeling for Enhanced CTR Prediction at Kuaishou [28.809014888174932]
We introduce TWIN-V2, an enhancement of SIM, where a divide-and-conquer approach is applied to compress life-cycle behaviors and uncover more accurate and diverse user interests.
Under an efficient deployment framework, TWIN-V2 has been successfully deployed to the primary traffic that serves hundreds of millions of daily active users at Kuaishou.
arXiv Detail & Related papers (2024-07-23T10:00:45Z) - SEMINAR: Search Enhanced Multi-modal Interest Network and Approximate Retrieval for Lifelong Sequential Recommendation [16.370075234443245]
We propose a unified lifelong multi-modal sequence model called SEMINAR-Search Enhanced Multi-Modal Interest Network and Approximate Retrieval.
Specifically, a network called Pretraining Search Unit learns the lifelong sequences of multi-modal query-item pairs in a pretraining-finetuning manner.
To accelerate the online retrieval speed of multi-modal embedding, we propose a multi-modal codebook-based product quantization strategy.
arXiv Detail & Related papers (2024-07-15T13:33:30Z) - Multi-Behavior Hypergraph-Enhanced Transformer for Sequential
Recommendation [33.97708796846252]
We introduce a new Multi-Behavior Hypergraph-enhanced Transformer framework (MBHT) to capture both short-term and long-term cross-type behavior dependencies.
Specifically, a multi-scale Transformer is equipped with low-rank self-attention to jointly encode behavior-aware sequential patterns from fine-grained and coarse-grained levels.
arXiv Detail & Related papers (2022-07-12T15:07:21Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
We propose a highly scalable hybrid learning model that consists of an RNN learning framework and an attention model.
As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly.
We also explore the use of off-policy reinforcement learning in multi-session personalized search ranking.
arXiv Detail & Related papers (2022-02-01T06:52:40Z) - Dynamic Memory based Attention Network for Sequential Recommendation [79.5901228623551]
We propose a novel long sequential recommendation model called Dynamic Memory-based Attention Network (DMAN)
It segments the overall long behavior sequence into a series of sub-sequences, then trains the model and maintains a set of memory blocks to preserve long-term interests of users.
Based on the dynamic memory, the user's short-term and long-term interests can be explicitly extracted and combined for efficient joint recommendation.
arXiv Detail & Related papers (2021-02-18T11:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.