Streamlined Airborne Software Development for Large UAVs: From Unified Data Collection to Automated Code Generation
- URL: http://arxiv.org/abs/2507.10321v1
- Date: Mon, 14 Jul 2025 14:30:06 GMT
- Title: Streamlined Airborne Software Development for Large UAVs: From Unified Data Collection to Automated Code Generation
- Authors: Viktor Sinitsyn, Nils Schlautmann, Florian Schwaiger, Florian Holzapfel,
- Abstract summary: This paper presents a novel process and toolchain designed to streamline the development of digital interfaces and onboard software.<n>The proposed approach focuses on automation and flexibility while maintaining compliance with design assurance requirements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aerospace industry has experienced significant transformations over the last decade, driven by technological advancements and innovative solutions in goods and personal transportation. This evolution has spurred the emergence of numerous start-ups that now face challenges traditionally encountered by established aerospace companies. Among these challenges is the efficient processing of digital intra-device communication interfaces for onboard equipment - a critical component for ensuring seamless system integration and functionality. Addressing this challenge requires solutions that emphasize clear and consistent interface descriptions, automation of processes, and reduced labor-intensive efforts. This paper presents a novel process and toolchain designed to streamline the development of digital interfaces and onboard software, which our team has successfully applied in several completed projects. The proposed approach focuses on automation and flexibility while maintaining compliance with design assurance requirements.
Related papers
- Research Challenges and Progress in the End-to-End V2X Cooperative Autonomous Driving Competition [57.698383942708]
Vehicle-to-everything (V2X) communication has emerged as a key enabler for extending perception range and enhancing driving safety.<n>We organized the End-to-End Autonomous Driving through V2X Cooperation Challenge, which features two tracks: cooperative temporal perception and cooperative end-to-end planning.<n>This paper describes the design and outcomes of the challenge, highlights key research problems including bandwidth-aware fusion, robust multi-agent planning, and heterogeneous sensor integration.
arXiv Detail & Related papers (2025-07-29T09:06:40Z) - Extending Lifetime of Embedded Systems by WebAssembly-based Functional Extensions Including Drivers [46.538276603099916]
We present Wasm-IO, a framework designed to facilitate peripheral I/O operations within WebAssembly (Wasm) containers.<n>We detail synchronous I/O and methods for embedding platform-independent peripheral configurations within Wasm binaries.
arXiv Detail & Related papers (2025-03-10T17:22:00Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [82.21522417363666]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.<n>The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.<n>This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPT series learns from and simulating real-world code submission activities.
Lingma SWE-GPT 72B resolves 30.20% of GitHub issues, marking a significant improvement in automatic issue resolution.
arXiv Detail & Related papers (2024-11-01T14:27:16Z) - System Reliability Engineering in the Age of Industry 4.0: Challenges and Innovations [2.7332305169992135]
Condition-based monitoring and predictive maintenance are examples of key advancements.
We focus on smart manufacturing and automotive engineering applications with sensor-based monitoring and driver assistance systems.
arXiv Detail & Related papers (2024-10-30T12:00:29Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - Low-Modeling of Software Systems [2.3170227013988947]
New types of user interfaces, the need for intelligent components, sustainability concerns,... bring new challenges that we need to handle.
In this paper, we present the concept of low-modeling as a solution to enhance current model-driven engineering techniques.
arXiv Detail & Related papers (2024-02-28T14:50:27Z) - Dealing with Data for RE: Mitigating Challenges while using NLP and
Generative AI [2.9189409618561966]
Book chapter explores the evolving landscape of Software Engineering in general, and Requirements Engineering (RE) in particular.
We discuss challenges that arise while integrating Natural Language Processing (NLP) and generative AI into enterprise-critical software systems.
Book provides practical insights, solutions, and examples to equip readers with the knowledge and tools necessary.
arXiv Detail & Related papers (2024-02-26T19:19:47Z) - A Logic Programming Approach to Global Logistics in a Co-Design
Environment [0.0]
This paper considers the challenge of creating and optimizing a global logistics system for the construction of a passenger aircraft.
The product in question is an aircraft, comprised of multiple components, manufactured at multiple sites worldwide.
The goal is to find an optimal way to build the aircraft taking into consideration the requirements for its industrial system.
arXiv Detail & Related papers (2023-08-30T09:06:34Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDev is a chat-powered software development framework in which specialized agents are guided in what to communicate.
These agents actively contribute to the design, coding, and testing phases through unified language-based communication.
arXiv Detail & Related papers (2023-07-16T02:11:34Z) - Data-Driven Aerospace Engineering: Reframing the Industry with Machine
Learning [49.367020832638794]
The aerospace industry is poised to capitalize on big data and machine learning.
Recent trends will be explored in context of critical challenges in design, manufacturing, verification and services.
arXiv Detail & Related papers (2020-08-24T22:40:26Z) - Workshops on Extreme Scale Design Automation (ESDA) Challenges and
Opportunities for 2025 and Beyond [10.439182852633788]
The CCC workshop series on Extreme-Scale Design Automation studied challenges faced by the EDA community.
This document represents a summary of the findings from these meetings.
arXiv Detail & Related papers (2020-05-04T15:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.