Improving Remote Sensing Classification using Topological Data Analysis and Convolutional Neural Networks
- URL: http://arxiv.org/abs/2507.10381v1
- Date: Mon, 14 Jul 2025 15:22:29 GMT
- Title: Improving Remote Sensing Classification using Topological Data Analysis and Convolutional Neural Networks
- Authors: Aaryam Sharma,
- Abstract summary: We propose a TDA feature engineering pipeline and a simple method to integrate topological features with deep learning models on remote sensing classification.<n>Our method improves the performance of a ResNet18 model on the EuroSAT dataset by 1.44% achieving 99.33% accuracy.<n>This is the first application of TDA features in satellite scene classification with deep learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological data analysis (TDA) is a relatively new field that is gaining rapid adoption due to its robustness and ability to effectively describe complex datasets by quantifying geometric information. In imaging contexts, TDA typically models data as filtered cubical complexes from which we can extract discriminative features using persistence homology. Meanwhile, convolutional neural networks (CNNs) have been shown to be biased towards texture based local features. To address this limitation, we propose a TDA feature engineering pipeline and a simple method to integrate topological features with deep learning models on remote sensing classification. Our method improves the performance of a ResNet18 model on the EuroSAT dataset by 1.44% achieving 99.33% accuracy, which surpasses all previously reported single-model accuracies, including those with larger architectures, such as ResNet50 (2x larger) and XL Vision Transformers (197x larger). We additionally show that our method's accuracy is 1.82% higher than our ResNet18 baseline on the RESISC45 dataset. To our knowledge, this is the first application of TDA features in satellite scene classification with deep learning. This demonstrates that TDA features can be integrated with deep learning models, even on datasets without explicit topological structures, thereby increasing the applicability of TDA. A clean implementation of our method will be made publicly available upon publication.
Related papers
- Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
We propose a novel framework that significantly reduces data volume while enhancing classification accuracy.<n>Our model employs a bidirectional reversed convolutional neural network (CNN) to efficiently extract spectral features, complemented by a specialized block for spatial feature analysis.
arXiv Detail & Related papers (2024-11-29T23:32:26Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Research on fusing topological data analysis with convolutional neural network [1.0222202698528364]
This paper proposes a feature fusion method based on Topological Data Analysis (TDA) and CNN, named TDA-CNN.
This method combines numerical distribution features captured by CNN with topological structure features captured by TDA to improve the feature learning and representation ability of CNN.
Experimental validation on datasets such as Intel Image, Gender Images, and Chinese calligraphy Styles by Calligraphers demonstrates that TDA-CNN improves the performance of VGG16, DenseNet121, and GoogleNet networks by 17.5%, 7.11%, and 4.45%, respectively.
arXiv Detail & Related papers (2024-06-19T07:43:53Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Rock Classification Based on Residual Networks [4.256045122451066]
We propose two approaches using residual neural networks to tackle the problem of rock classification.
By modifying kernel sizes, normalization methods and composition based on ResNet34, we achieve an accuracy of 70.1% on the test dataset.
Using a similar backbone like BoTNet that incorporates multihead self attention, we additionally use internal residual connections in our model.
This boosts the model's performance, achieving an accuracy of 73.7% on the test dataset.
arXiv Detail & Related papers (2024-02-19T04:45:15Z) - Deep-Learning Framework for Optimal Selection of Soil Sampling Sites [0.0]
This work leverages the recent advancements of deep learning in image processing to find optimal locations that present the important characteristics of a field.
Our framework is constructed with an encoder-decoder architecture with the self-attention mechanism as the backbone.
The model has achieved impressive results on the testing dataset, with a mean accuracy of 99.52%, a mean Intersection over Union (IoU) of 57.35%, and a mean Dice Coefficient of 71.47%.
arXiv Detail & Related papers (2023-09-02T16:19:21Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - EAutoDet: Efficient Architecture Search for Object Detection [110.99532343155073]
EAutoDet framework can discover practical backbone and FPN architectures for object detection in 1.4 GPU-days.
We propose a kernel reusing technique by sharing the weights of candidate operations on one edge and consolidating them into one convolution.
In particular, the discovered architectures surpass state-of-the-art object detection NAS methods and achieve 40.1 mAP with 120 FPS and 49.2 mAP with 41.3 FPS on COCO test-dev set.
arXiv Detail & Related papers (2022-03-21T05:56:12Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - TDA-Net: Fusion of Persistent Homology and Deep Learning Features for
COVID-19 Detection in Chest X-Ray Images [0.7734726150561088]
Topological Data Analysis has emerged as a robust tool to extract and compare the structure of datasets.
To capture the characteristics of both powerful tools, we propose textitTDA-Net, a novel ensemble network that fuses topological and deep features.
arXiv Detail & Related papers (2021-01-21T01:51:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.