Dynamical stability for dense patterns in discrete attractor neural networks
- URL: http://arxiv.org/abs/2507.10383v1
- Date: Mon, 14 Jul 2025 15:23:24 GMT
- Title: Dynamical stability for dense patterns in discrete attractor neural networks
- Authors: Uri Cohen, Máté Lengyel,
- Abstract summary: We derive a theory of the local stability of discrete fixed points in a broad class of networks with graded neural activities and in the presence of noise.<n>Our analysis highlights the computational benefits of threshold-linear activation and sparse-like patterns.
- Score: 4.450536872346658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks storing multiple discrete attractors are canonical models of biological memory. Previously, the dynamical stability of such networks could only be guaranteed under highly restrictive conditions. Here, we derive a theory of the local stability of discrete fixed points in a broad class of networks with graded neural activities and in the presence of noise. By directly analyzing the bulk and outliers of the Jacobian spectrum, we show that all fixed points are stable below a critical load that is distinct from the classical \textit{critical capacity} and depends on the statistics of neural activities in the fixed points as well as the single-neuron activation function. Our analysis highlights the computational benefits of threshold-linear activation and sparse-like patterns.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - On the Stability of the Jacobian Matrix in Deep Neural Networks [9.617753464544606]
We establish a general stability theorem for deep neural networks that accommodates sparsity and weakly correlated weights.<n>Our results rely on recent advances in random matrix theory, and provide rigorous guarantees for spectral stability in a much broader class of network models.
arXiv Detail & Related papers (2025-06-10T13:04:42Z) - Generative System Dynamics in Recurrent Neural Networks [56.958984970518564]
We investigate the continuous time dynamics of Recurrent Neural Networks (RNNs)<n>We show that skew-symmetric weight matrices are fundamental to enable stable limit cycles in both linear and nonlinear configurations.<n> Numerical simulations showcase how nonlinear activation functions not only maintain limit cycles, but also enhance the numerical stability of the system integration process.
arXiv Detail & Related papers (2025-04-16T10:39:43Z) - Allostatic Control of Persistent States in Spiking Neural Networks for perception and computation [79.16635054977068]
We introduce a novel model for updating perceptual beliefs about the environment by extending the concept of Allostasis to the control of internal representations.<n>In this paper, we focus on an application in numerical cognition, where a bump of activity in an attractor network is used as a spatial numerical representation.
arXiv Detail & Related papers (2025-03-20T12:28:08Z) - Unconditional stability of a recurrent neural circuit implementing divisive normalization [0.0]
We prove the remarkable property of unconditional local stability for an arbitrary-dimensional ORGaNICs circuit.<n>We show that ORGaNICs can be trained by backpropagation through time without gradient clipping/scaling.
arXiv Detail & Related papers (2024-09-27T17:46:05Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Stability of Neural Networks on Manifolds to Relative Perturbations [118.84154142918214]
Graph Neural Networks (GNNs) show impressive performance in many practical scenarios.
GNNs can scale well on large size graphs, but this is contradicted by the fact that existing stability bounds grow with the number of nodes.
arXiv Detail & Related papers (2021-10-10T04:37:19Z) - Linear systems with neural network nonlinearities: Improved stability
analysis via acausal Zames-Falb multipliers [0.0]
We analyze the stability of feedback interconnections of a linear time-invariant system with a neural network nonlinearity in discrete time.
Our approach provides a flexible and versatile framework for stability analysis of feedback interconnections with neural network nonlinearities.
arXiv Detail & Related papers (2021-03-31T14:21:03Z) - Dissipative Deep Neural Dynamical Systems [0.9864260997723973]
We leverage the representation of neural networks as pointwise affine maps to expose their local linear operators.
This allows us to "crack open the black box" of the neural dynamical system's behavior.
We analyze the variance in dynamical behavior and eigenvalue spectra of these local linear operators with varying weight factorizations, activation functions, bias terms, and depths.
arXiv Detail & Related papers (2020-11-26T23:13:16Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.