FinTeam: A Multi-Agent Collaborative Intelligence System for Comprehensive Financial Scenarios
- URL: http://arxiv.org/abs/2507.10448v1
- Date: Sat, 05 Jul 2025 10:12:25 GMT
- Title: FinTeam: A Multi-Agent Collaborative Intelligence System for Comprehensive Financial Scenarios
- Authors: Yingqian Wu, Qiushi Wang, Zefei Long, Rong Ye, Zhongtian Lu, Xianyin Zhang, Bingxuan Li, Wei Chen, Liwen Zhang, Zhongyu Wei,
- Abstract summary: FinTeam is a financial multi-agent collaborative system.<n>We train these agents with specific financial expertise using constructed datasets.<n>We evaluate FinTeam on comprehensive financial tasks constructed from real online investment forums.
- Score: 31.464961691866854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial report generation tasks range from macro- to micro-economics analysis, also requiring extensive data analysis. Existing LLM models are usually fine-tuned on simple QA tasks and cannot comprehensively analyze real financial scenarios. Given the complexity, financial companies often distribute tasks among departments. Inspired by this, we propose FinTeam, a financial multi-agent collaborative system, with a workflow with four LLM agents: document analyzer, analyst, accountant, and consultant. We train these agents with specific financial expertise using constructed datasets. We evaluate FinTeam on comprehensive financial tasks constructed from real online investment forums, including macroeconomic, industry, and company analysis. The human evaluation shows that by combining agents, the financial reports generate from FinTeam achieved a 62.00% acceptance rate, outperforming baseline models like GPT-4o and Xuanyuan. Additionally, FinTeam's agents demonstrate a 7.43% average improvement on FinCUGE and a 2.06% accuracy boost on FinEval. Project is available at https://github.com/FudanDISC/DISC-FinLLM/.
Related papers
- FinMaster: A Holistic Benchmark for Mastering Full-Pipeline Financial Workflows with LLMs [15.230256296815565]
FinMaster is a benchmark designed to assess the capabilities of large language models (LLMs) in financial literacy, accounting, auditing, and consulting.<n>FinMaster comprises three main modules: FinSim, FinSuite, and FinEval.<n>Experiments reveal critical capability gaps in financial reasoning, with accuracy dropping from over 90% on basic tasks to merely 37% on complex scenarios.
arXiv Detail & Related papers (2025-05-18T11:47:55Z) - FinanceQA: A Benchmark for Evaluating Financial Analysis Capabilities of Large Language Models [0.0]
FinanceQA is a testing suite that evaluates LLMs' performance on complex numerical financial analysis tasks that mirror real-world investment work.<n>Current LLMs fail to meet the strict accuracy requirements of financial institutions, with models failing approximately 60% of realistic tasks.<n>Results show that higher-quality training data is needed to support such tasks, which we experiment with using OpenAI's fine-tuning API.
arXiv Detail & Related papers (2025-01-30T00:06:55Z) - FinTeamExperts: Role Specialized MOEs For Financial Analysis [17.145985064776273]
We present the FinTeamExperts, a role-specialized LLM framework structured as a Mixture of Experts (MOEs) for financial analysis.
The framework simulates a collaborative team setting by training each model to specialize in distinct roles: Macro Analysts, Micro analysts, and Quantitative Analysts.
We achieve this by training three 8-billion parameter models on different corpus, each dedicated to excelling in specific finance-related roles.
arXiv Detail & Related papers (2024-10-28T00:40:55Z) - Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [88.96861155804935]
We introduce textitOpen-FinLLMs, the first open-source multimodal financial LLMs.<n>FinLLaMA is pre-trained on a comprehensive 52-billion-token corpus; FinLLaMA-Instruct, fine-tuned with 573K financial instructions; and FinLLaVA, enhanced with 1.43M multimodal tuning pairs.<n>We evaluate Open-FinLLMs across 14 financial tasks, 30 datasets, and 4 multimodal tasks in zero-shot, few-shot, and supervised fine-tuning settings.
arXiv Detail & Related papers (2024-08-20T16:15:28Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
We focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents.
We propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts.
The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge.
arXiv Detail & Related papers (2021-09-01T00:08:14Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.