Extension OL-MDISF: Online Learning from Mix-Typed, Drifted, and Incomplete Streaming Features
- URL: http://arxiv.org/abs/2507.10594v2
- Date: Wed, 16 Jul 2025 01:23:49 GMT
- Title: Extension OL-MDISF: Online Learning from Mix-Typed, Drifted, and Incomplete Streaming Features
- Authors: Shengda Zhuo, Di Wu, Yi He, Shuqiang Huang, Xindong Wu,
- Abstract summary: Real-world data streams with mixed feature types present challenges for traditional parametric modeling.<n>Time and cost constraints make it infeasible to label every data instance in a supervised setting.<n>New algorithm Online Learning from Mix-typed, Drifted, and Incomplete Streaming Features (OL-MDISF) aims to relax restrictions on both feature types, data distribution, and supervision information.
- Score: 13.987655062880089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online learning, where feature spaces can change over time, offers a flexible learning paradigm that has attracted considerable attention. However, it still faces three significant challenges. First, the heterogeneity of real-world data streams with mixed feature types presents challenges for traditional parametric modeling. Second, data stream distributions can shift over time, causing an abrupt and substantial decline in model performance. Additionally, the time and cost constraints make it infeasible to label every data instance in a supervised setting. To overcome these challenges, we propose a new algorithm Online Learning from Mix-typed, Drifted, and Incomplete Streaming Features (OL-MDISF), which aims to relax restrictions on both feature types, data distribution, and supervision information. Our approach involves utilizing copula models to create a comprehensive latent space, employing an adaptive sliding window for detecting drift points to ensure model stability, and establishing label proximity information based on geometric structural relationships. To demonstrate the model's efficiency and effectiveness, we provide theoretical analysis and comprehensive experimental results. This extension serves as a standalone technical reference to the original OL-MDISF method. It provides (i) a contextual analysis of OL-MDISF within the broader landscape of online learning, covering recent advances in mixed-type feature modeling, concept drift adaptation, and weak supervision, and (ii) a comprehensive set of experiments across 14 real-world datasets under two types of drift scenarios. These include full CER trends, ablation studies, sensitivity analyses, and temporal ensemble dynamics. We hope this document can serve as a reproducible benchmark and technical resource for researchers working on nonstationary, heterogeneous, and weakly supervised data streams.
Related papers
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
We introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds.<n>Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures.<n>We propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training.
arXiv Detail & Related papers (2025-06-26T11:53:59Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - A Hybrid Framework for Real-Time Data Drift and Anomaly Identification Using Hierarchical Temporal Memory and Statistical Tests [14.37149160708975]
This paper proposes a novel hybrid framework combiningHierarchical Temporal Memory (HTM) and Sequential Probability Ratio Test (SPRT) for real-time data drift detection and anomaly identification.<n> Experimental evaluations demonstrate that the proposed method outperforms conventional drift detection techniques like the Kolmogorov-Smirnov (KS) test, Wasserstein distance, and Population Stability Index (PSI) in terms of accuracy, adaptability, and computational efficiency.
arXiv Detail & Related papers (2025-04-24T18:23:18Z) - Disentangled World Models: Learning to Transfer Semantic Knowledge from Distracting Videos for Reinforcement Learning [93.58897637077001]
This paper tries to learn and understand underlying semantic variations from distracting videos via offline-to-online latent distillation and flexible disentanglement constraints.<n>We pretrain the action-free video prediction model offline with disentanglement regularization to extract semantic knowledge from distracting videos.<n>For finetuning in the online environment, we exploit the knowledge from the pretrained model and introduce a disentanglement constraint to the world model.
arXiv Detail & Related papers (2025-03-11T13:50:22Z) - Beyond Fixed Variables: Expanding-variate Time Series Forecasting via Flat Scheme and Spatio-temporal Focal Learning [9.205228068704141]
In real-world applications, Cyber-Physical Systems often expand as new sensors are, increasing variables in MTSF.<n>This task presents unique challenges, specifically (1) handling inconsistent data caused by adding new variables, and (2) addressing imbalanced-temporal learning.<n>To address these challenges, we propose STEV, a flexible-temporal forecasting framework.
arXiv Detail & Related papers (2025-02-21T08:43:26Z) - Off-dynamics Conditional Diffusion Planners [15.321049697197447]
This work explores the use of more readily available, albeit off-dynamics datasets, to address the challenge of data scarcity in Offline RL.
We propose a novel approach using conditional Diffusion Probabilistic Models (DPMs) to learn the joint distribution of the large-scale off-dynamics dataset and the limited target dataset.
arXiv Detail & Related papers (2024-10-16T04:56:43Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Robust Training of Federated Models with Extremely Label Deficiency [84.00832527512148]
Federated semi-supervised learning (FSSL) has emerged as a powerful paradigm for collaboratively training machine learning models using distributed data with label deficiency.
We propose a novel twin-model paradigm, called Twin-sight, designed to enhance mutual guidance by providing insights from different perspectives of labeled and unlabeled data.
Our comprehensive experiments on four benchmark datasets provide substantial evidence that Twin-sight can significantly outperform state-of-the-art methods across various experimental settings.
arXiv Detail & Related papers (2024-02-22T10:19:34Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Continual Vision-Language Representation Learning with Off-Diagonal
Information [112.39419069447902]
Multi-modal contrastive learning frameworks like CLIP typically require a large amount of image-text samples for training.
This paper discusses the feasibility of continual CLIP training using streaming data.
arXiv Detail & Related papers (2023-05-11T08:04:46Z) - Continual Learning with Optimal Transport based Mixture Model [17.398605698033656]
We propose an online mixture model learning approach based on nice properties of the mature optimal transport theory (OT-MM)
Our proposed method can significantly outperform the current state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-30T06:40:29Z) - Online Deep Learning from Doubly-Streaming Data [17.119725174036653]
This paper investigates a new online learning problem with doubly-streaming data, where the data streams are described by feature spaces that constantly evolve.
A plausible idea to overcome the challenges is to establish relationship between the pre-and-post evolving feature spaces.
We propose a novel OLD3S paradigm, where a shared latent subspace is discovered to summarize information from the old and new feature spaces.
arXiv Detail & Related papers (2022-04-25T17:06:39Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
Imposing consistency through proxy tasks has been shown to enhance data-driven learning.
This paper introduces novel and effective consistency strategies for optical flow estimation.
arXiv Detail & Related papers (2022-04-14T22:58:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.