Comprehension Without Competence: Architectural Limits of LLMs in Symbolic Computation and Reasoning
- URL: http://arxiv.org/abs/2507.10624v1
- Date: Mon, 14 Jul 2025 04:01:45 GMT
- Title: Comprehension Without Competence: Architectural Limits of LLMs in Symbolic Computation and Reasoning
- Authors: Zheng Zhang,
- Abstract summary: Large Language Models (LLMs) display striking surface fluency yet systematically fail at tasks requiring symbolic reasoning, arithmetic accuracy, and logical consistency.<n>This paper offers a structural diagnosis of such failures, revealing a persistent gap between textitcomprehension and textitcompetence<n>We term this phenomenon the computational textitsplit-brain syndrome, where instruction and action pathways are geometrically and functionally dissociated.
- Score: 7.996731257791417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) display striking surface fluency yet systematically fail at tasks requiring symbolic reasoning, arithmetic accuracy, and logical consistency. This paper offers a structural diagnosis of such failures, revealing a persistent gap between \textit{comprehension} and \textit{competence}. Through controlled experiments and architectural analysis, we demonstrate that LLMs often articulate correct principles without reliably applying them--a failure rooted not in knowledge access, but in computational execution. We term this phenomenon the computational \textit{split-brain syndrome}, where instruction and action pathways are geometrically and functionally dissociated. This core limitation recurs across domains, from mathematical operations to relational inferences, and explains why model behavior remains brittle even under idealized prompting. We argue that LLMs function as powerful pattern completion engines, but lack the architectural scaffolding for principled, compositional reasoning. Our findings delineate the boundary of current LLM capabilities and motivate future models with metacognitive control, principle lifting, and structurally grounded execution. This diagnosis also clarifies why mechanistic interpretability findings may reflect training-specific pattern coordination rather than universal computational principles, and why the geometric separation between instruction and execution pathways suggests limitations in neural introspection and mechanistic analysis.
Related papers
- Do LLMs Dream of Discrete Algorithms? [0.7646713951724011]
Large Language Models (LLMs) have rapidly transformed the landscape of artificial intelligence.<n>Their reliance on probabilistic inference limits their effectiveness in domains requiring strict logical reasoning.<n>This paper proposes a neurosymbolic approach that augments LLMs with logic-based reasoning modules.
arXiv Detail & Related papers (2025-06-29T22:03:01Z) - The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity [16.266145641151375]
Large Reasoning Models generate detailed thinking processes before providing answers.<n>We show that LRMs face a complete accuracy collapse beyond certain complexities.<n>We also investigate the reasoning traces in more depth, studying the patterns of explored solutions.
arXiv Detail & Related papers (2025-06-07T22:42:29Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the interaction between world knowledge and logical reasoning.<n>We find that state-of-the-art large language models (LLMs) often rely on superficial generalizations.<n>We show that simple reformulations of the task can elicit more robust reasoning behavior.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Inductive Learning of Logical Theories with LLMs: An Expressivity-Graded Analysis [9.865771016218549]
This work presents a novel systematic methodology to analyse the capabilities and limitations of Large Language Models (LLMs)<n>The analysis is complexity-graded w.r.t. rule dependency structure, allowing quantification of specific inference challenges on LLM performance.
arXiv Detail & Related papers (2024-08-15T16:41:00Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
We focus on two popular reasoning tasks: arithmetic reasoning and code generation.
We introduce (i) a general ontology of perturbations for math and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets.
We show a significant performance drop across all the models against perturbed questions.
arXiv Detail & Related papers (2024-01-17T18:13:07Z) - Parrot Mind: Towards Explaining the Complex Task Reasoning of Pretrained Large Language Models with Template-Content Structure [66.33623392497599]
We show that a structure called template-content structure (T-C structure) can reduce the possible space from exponential level to linear level.
We demonstrate that models can achieve task composition, further reducing the space needed to learn from linear to logarithmic.
arXiv Detail & Related papers (2023-10-09T06:57:45Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.