Extracting Document Relations from Search Corpus by Marginalizing over User Queries
- URL: http://arxiv.org/abs/2507.10726v1
- Date: Mon, 14 Jul 2025 18:47:13 GMT
- Title: Extracting Document Relations from Search Corpus by Marginalizing over User Queries
- Authors: Yuki Iwamoto, Kaoru Tsunoda, Ken Kaneiwa,
- Abstract summary: We propose a novel framework that discovers document relationships through query marginalization.<n>Extracting Document Relations by Marginalizing over User queries is based on the insight that strongly related documents often co-occur in diverse user queries.<n>Our query-driven framework offers a practical approach to document organization that adapts to different user perspectives and information needs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding relationships between documents in large-scale corpora is essential for knowledge discovery and information organization. However, existing approaches rely heavily on manual annotation or predefined relationship taxonomies. We propose EDR-MQ (Extracting Document Relations by Marginalizing over User Queries), a novel framework that discovers document relationships through query marginalization. EDR-MQ is based on the insight that strongly related documents often co-occur in results across diverse user queries, enabling us to estimate joint probabilities between document pairs by marginalizing over a collection of queries. To enable this query marginalization approach, we develop Multiply Conditioned Retrieval-Augmented Generation (MC-RAG), which employs conditional retrieval where subsequent document retrievals depend on previously retrieved content. By observing co-occurrence patterns across diverse queries, EDR-MQ estimates joint probabilities between document pairs without requiring labeled training data or predefined taxonomies. Experimental results show that our query marginalization approach successfully identifies meaningful document relationships, revealing topical clusters, evidence chains, and cross-domain connections that are not apparent through traditional similarity-based methods. Our query-driven framework offers a practical approach to document organization that adapts to different user perspectives and information needs.
Related papers
- A Unified Retrieval Framework with Document Ranking and EDU Filtering for Multi-document Summarization [18.13855430873805]
Current methods apply truncation after the retrieval process to fit the context length.<n>We propose a novel retrieval-based framework that integrates query selection and document ranking.<n>We evaluate our framework on multiple MDS datasets, demonstrating consistent improvements in ROUGE metrics.
arXiv Detail & Related papers (2025-04-23T13:41:10Z) - DOGR: Leveraging Document-Oriented Contrastive Learning in Generative Retrieval [10.770281363775148]
We propose a novel and general generative retrieval framework, namely Leveraging Document-Oriented Contrastive Learning in Generative Retrieval (DOGR)<n>It adopts a two-stage learning strategy that captures the relationship between queries and documents comprehensively through direct interactions.<n>Negative sampling methods and corresponding contrastive learning objectives are implemented to enhance the learning of semantic representations.
arXiv Detail & Related papers (2025-02-11T03:25:42Z) - Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
We propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG)<n>We leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR)
arXiv Detail & Related papers (2024-10-17T17:03:23Z) - Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
We introduce a framework called GRaded Generative Retrieval (GR$2$)
GR$2$ focuses on two key components: ensuring relevant and distinct identifiers, and implementing multi-graded constrained contrastive training.
Experiments on datasets with both multi-graded and binary relevance demonstrate the effectiveness of GR$2$.
arXiv Detail & Related papers (2024-09-27T02:55:53Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - Learning Diverse Document Representations with Deep Query Interactions
for Dense Retrieval [79.37614949970013]
We propose a new dense retrieval model which learns diverse document representations with deep query interactions.
Our model encodes each document with a set of generated pseudo-queries to get query-informed, multi-view document representations.
arXiv Detail & Related papers (2022-08-08T16:00:55Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval.
ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels.
Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
arXiv Detail & Related papers (2021-08-30T18:10:26Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
Existing work relies heavily on retrieval-style methods for estimating the relevance between queries and text segments.
We propose a coarse-to-fine modeling framework which introduces separate modules for estimating whether segments are relevant to the query.
We demonstrate that our framework outperforms strong comparison systems on standard QFS benchmarks.
arXiv Detail & Related papers (2020-04-06T22:35:19Z) - Pairwise Multi-Class Document Classification for Semantic Relations
between Wikipedia Articles [5.40541521227338]
We model the problem of finding the relationship between two documents as a pairwise document classification task.
To find semantic relation between documents, we apply a series of techniques, such as GloVe, paragraph-s, BERT, and XLNet.
We perform our experiments on a newly proposed dataset of 32,168 Wikipedia article pairs and Wikidata properties that define the semantic document relations.
arXiv Detail & Related papers (2020-03-22T12:52:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.