A Generalizable Physics-Enhanced State Space Model for Long-Term Dynamics Forecasting in Complex Environments
- URL: http://arxiv.org/abs/2507.10792v1
- Date: Mon, 14 Jul 2025 20:46:12 GMT
- Title: A Generalizable Physics-Enhanced State Space Model for Long-Term Dynamics Forecasting in Complex Environments
- Authors: Yuchen Wang, Hongjue Zhao, Haohong Lin, Enze Xu, Lifang He, Huajie Shao,
- Abstract summary: We propose Phy-SSM, a generalizable method that integrates partial physics knowledge into state space models.<n>Our motivation is that SSMs can effectively capture long-range dependencies in sequential data and model continuous dynamical systems.<n>Experiments on three real-world applications, including vehicle motion prediction, drone state prediction, and COVID-19 epidemiology forecasting, demonstrate the superior performance of Phy-SSM.
- Score: 16.251382658415494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work aims to address the problem of long-term dynamic forecasting in complex environments where data are noisy and irregularly sampled. While recent studies have introduced some methods to improve prediction performance, these approaches still face a significant challenge in handling long-term extrapolation tasks under such complex scenarios. To overcome this challenge, we propose Phy-SSM, a generalizable method that integrates partial physics knowledge into state space models (SSMs) for long-term dynamics forecasting in complex environments. Our motivation is that SSMs can effectively capture long-range dependencies in sequential data and model continuous dynamical systems, while the incorporation of physics knowledge improves generalization ability. The key challenge lies in how to seamlessly incorporate partially known physics into SSMs. To achieve this, we decompose partially known system dynamics into known and unknown state matrices, which are integrated into a Phy-SSM unit. To further enhance long-term prediction performance, we introduce a physics state regularization term to make the estimated latent states align with system dynamics. Besides, we theoretically analyze the uniqueness of the solutions for our method. Extensive experiments on three real-world applications, including vehicle motion prediction, drone state prediction, and COVID-19 epidemiology forecasting, demonstrate the superior performance of Phy-SSM over the baselines in both long-term interpolation and extrapolation tasks. The code is available at https://github.com/511205787/Phy_SSM-ICML2025.
Related papers
- Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting [16.519812316626584]
PhyxMamba is a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems.<n>Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization.<n>This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond.
arXiv Detail & Related papers (2025-05-29T08:56:45Z) - PINP: Physics-Informed Neural Predictor with latent estimation of fluid flows [11.102585080028945]
We propose a new physics-informed learning approach that incorporates coupled physical quantities into the prediction process.<n>By incorporating physical equations, our model demonstrates temporal extrapolation and spatial generalization capabilities.
arXiv Detail & Related papers (2025-04-08T14:11:01Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Spatio-temporal Fourier Transformer (StFT) for Long-term Dynamics Prediction [13.502705948250359]
Simulating the long-term dynamics of multi-scale and multi-physics systems poses a significant challenge in science and engineering.<n>Neural operators have emerged as promising models for predicting such dynamics due to their flexibility and computational efficiency.<n>We propose a generative residual correction mechanism to estimate and mitigate predictive uncertainties, enhancing the accuracy and reliability of long-term forecasts.
arXiv Detail & Related papers (2025-03-14T22:04:03Z) - Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
We introduce the Dynamic System Prediction from Sparse Observations using Voronoi Tessellation (DSOVT) framework.
By integrating Voronoi tessellations with deep learning models, DSOVT is adept at predicting dynamical systems with sparse, unstructured observations.
Compared to purely data-driven models, our physics-based approach enables the model to learn physical laws within explicitly formulated dynamics.
arXiv Detail & Related papers (2024-08-31T13:43:52Z) - Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides [17.559471937824767]
We propose a conditional generative model called Force-guided Bridge Matching (FBM)<n>FBM learns full-atom time-coarsened dynamics and targets the Boltzmann-constrained distribution.<n> Experiments on two datasets consisting of peptides verify our superiority in terms of comprehensive metrics.
arXiv Detail & Related papers (2024-08-27T15:07:27Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.