Supporting SENCOTEN Language Documentation Efforts with Automatic Speech Recognition
- URL: http://arxiv.org/abs/2507.10827v2
- Date: Sun, 20 Jul 2025 14:35:26 GMT
- Title: Supporting SENCOTEN Language Documentation Efforts with Automatic Speech Recognition
- Authors: Mengzhe Geng, Patrick Littell, Aidan Pine, PENÁĆ, Marc Tessier, Roland Kuhn,
- Abstract summary: The SENCOTEN language, spoken on the Saanich peninsula of southern Vancouver Island, is in the midst of vigorous language revitalization efforts.<n>We propose an ASR-driven documentation pipeline that leverages augmented speech data from a text-to-speech system.<n>An n-gram language model is also incorporated via shallow fusion or n-best restoring to maximize the use of available data.
- Score: 4.702636570667311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The SENCOTEN language, spoken on the Saanich peninsula of southern Vancouver Island, is in the midst of vigorous language revitalization efforts to turn the tide of language loss as a result of colonial language policies. To support these on-the-ground efforts, the community is turning to digital technology. Automatic Speech Recognition (ASR) technology holds great promise for accelerating language documentation and the creation of educational resources. However, developing ASR systems for SENCOTEN is challenging due to limited data and significant vocabulary variation from its polysynthetic structure and stress-driven metathesis. To address these challenges, we propose an ASR-driven documentation pipeline that leverages augmented speech data from a text-to-speech (TTS) system and cross-lingual transfer learning with Speech Foundation Models (SFMs). An n-gram language model is also incorporated via shallow fusion or n-best restoring to maximize the use of available data. Experiments on the SENCOTEN dataset show a word error rate (WER) of 19.34% and a character error rate (CER) of 5.09% on the test set with a 57.02% out-of-vocabulary (OOV) rate. After filtering minor cedilla-related errors, WER improves to 14.32% (26.48% on unseen words) and CER to 3.45%, demonstrating the potential of our ASR-driven pipeline to support SENCOTEN language documentation.
Related papers
- ELAICHI: Enhancing Low-resource TTS by Addressing Infrequent and Low-frequency Character Bigrams [16.172599163455693]
We leverage high-quality data from linguistically or geographically related languages to improve TTS for the target language.
Second, we utilize low-quality Automatic Speech Recognition (ASR) data recorded in non-studio environments, which is refined using denoising and speech enhancement models.
Third, we apply knowledge distillation from large-scale models using synthetic data to generate more robust outputs.
arXiv Detail & Related papers (2024-10-23T14:18:25Z) - Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
Speech Emotion Recognition (SER) is a crucial component in developing general-purpose AI agents capable of natural human-computer interaction.<n>Building robust multilingual SER systems remains challenging due to the scarcity of labeled data in languages other than English and Chinese.<n>We propose an approach to enhance SER performance in low SER resource languages by leveraging data from high-resource languages.
arXiv Detail & Related papers (2024-09-17T08:36:45Z) - Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments [8.103855990028842]
We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS.
We found increasing TTS phrase diversity and utterance sampling monotonically improves model performance.
Our experiments are based on English and single word utterances but the findings generalize to i18n languages.
arXiv Detail & Related papers (2024-07-23T21:05:44Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - Strategies for improving low resource speech to text translation relying
on pre-trained ASR models [59.90106959717875]
This paper presents techniques and findings for improving the performance of low-resource speech to text translation (ST)
We conducted experiments on both simulated and real-low resource setups, on language pairs English - Portuguese, and Tamasheq - French respectively.
arXiv Detail & Related papers (2023-05-31T21:58:07Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models.
Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks.
arXiv Detail & Related papers (2023-05-24T07:42:15Z) - Making More of Little Data: Improving Low-Resource Automatic Speech
Recognition Using Data Augmentation [20.45373308116162]
This study focuses on four typologically diverse minority languages or language variants (West Germanic: Gronings, West-Frisian; Malayo-Polynesian: Besemah, Nasal).
For all four languages, we examine the use of self-training, where an ASR system trained with the available human-transcribed data is used to generate transcriptions, which are then combined with the original data to train a new ASR system.
We find that using a self-training approach consistently yields improved performance (a relative WER reduction up to 20.5% compared to using an ASR system trained on 24 minutes of
arXiv Detail & Related papers (2023-05-18T13:20:38Z) - Maestro-U: Leveraging joint speech-text representation learning for zero
supervised speech ASR [39.59611707268663]
We show that a modality-matched joint speech and text model can be leveraged to train a massively multilingual ASR model without any supervised speech for some languages.
We show that Maestro-U can promote knowledge transfer from languages with supervised speech even when there is limited to no graphemic overlap.
arXiv Detail & Related papers (2022-10-18T17:50:31Z) - Dynamic Acoustic Unit Augmentation With BPE-Dropout for Low-Resource
End-to-End Speech Recognition [62.94773371761236]
We consider building an effective end-to-end ASR system in low-resource setups with a high OOV rate.
We propose a method of dynamic acoustic unit augmentation based on the BPE-dropout technique.
Our monolingual Turkish Conformer established a competitive result with 22.2% character error rate (CER) and 38.9% word error rate (WER)
arXiv Detail & Related papers (2021-03-12T10:10:13Z) - Transfer Learning based Speech Affect Recognition in Urdu [0.0]
We pre-train a model for high resource language affect recognition task and fine tune the parameters for low resource language.
This approach achieves high Unweighted Average Recall (UAR) when compared with existing algorithms.
arXiv Detail & Related papers (2021-03-05T10:30:58Z) - Speech Recognition for Endangered and Extinct Samoyedic languages [0.32228025627337864]
This study presents experiments on speech recognition with endangered and extinct Samoyedic languages.
To best of our knowledge, this is the first time a functional ASR system is built for an extinct language.
arXiv Detail & Related papers (2020-12-09T21:41:40Z) - Bootstrap an end-to-end ASR system by multilingual training, transfer
learning, text-to-text mapping and synthetic audio [8.510792628268824]
bootstrapping speech recognition on limited data resources has been an area of active research for long.
We investigate here the effectiveness of different strategies to bootstrap an RNN-Transducer based automatic speech recognition (ASR) system in the low resource regime.
Our experiments demonstrate that transfer learning from a multilingual model, using a post-ASR text-to-text mapping and synthetic audio deliver additive improvements.
arXiv Detail & Related papers (2020-11-25T13:11:32Z) - LRSpeech: Extremely Low-Resource Speech Synthesis and Recognition [148.43282526983637]
We develop LRSpeech, a TTS and ASR system for languages with low data cost.
We conduct experiments on an experimental language (English) and a truly low-resource language (Lithuanian) to verify the effectiveness of LRSpeech.
We are currently deploying LRSpeech into a commercialized cloud speech service to support TTS on more rare languages.
arXiv Detail & Related papers (2020-08-09T08:16:33Z) - Improving Cross-Lingual Transfer Learning for End-to-End Speech
Recognition with Speech Translation [63.16500026845157]
We introduce speech-to-text translation as an auxiliary task to incorporate additional knowledge of the target language.
We show that training ST with human translations is not necessary.
Even with pseudo-labels from low-resource MT (200K examples), ST-enhanced transfer brings up to 8.9% WER reduction to direct transfer.
arXiv Detail & Related papers (2020-06-09T19:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.