Language-Guided Contrastive Audio-Visual Masked Autoencoder with Automatically Generated Audio-Visual-Text Triplets from Videos
- URL: http://arxiv.org/abs/2507.11967v1
- Date: Wed, 16 Jul 2025 06:58:14 GMT
- Title: Language-Guided Contrastive Audio-Visual Masked Autoencoder with Automatically Generated Audio-Visual-Text Triplets from Videos
- Authors: Yuchi Ishikawa, Shota Nakada, Hokuto Munakata, Kazuhiro Saito, Tatsuya Komatsu, Yoshimitsu Aoki,
- Abstract summary: LG-CAV-MAE integrates a pretrained text encoder into contrastive audio-visual masked autoencoders.<n>To train LG-CAV-MAE, we introduce an automatic method to generate audio-visual-text triplets from unlabeled videos.<n>This approach yields high-quality audio-visual-text triplets without requiring manual annotations.
- Score: 16.213708405651644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose Language-Guided Contrastive Audio-Visual Masked Autoencoders (LG-CAV-MAE) to improve audio-visual representation learning. LG-CAV-MAE integrates a pretrained text encoder into contrastive audio-visual masked autoencoders, enabling the model to learn across audio, visual and text modalities. To train LG-CAV-MAE, we introduce an automatic method to generate audio-visual-text triplets from unlabeled videos. We first generate frame-level captions using an image captioning model and then apply CLAP-based filtering to ensure strong alignment between audio and captions. This approach yields high-quality audio-visual-text triplets without requiring manual annotations. We evaluate LG-CAV-MAE on audio-visual retrieval tasks, as well as an audio-visual classification task. Our method significantly outperforms existing approaches, achieving up to a 5.6% improvement in recall@10 for retrieval tasks and a 3.2% improvement for the classification task.
Related papers
- CLIP-VAD: Exploiting Vision-Language Models for Voice Activity Detection [2.110168344647122]
Voice Activity Detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech.
We introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models.
Our approach outperforms several audio-visual methods despite its simplicity, and without requiring pre-training on extensive audio-visual datasets.
arXiv Detail & Related papers (2024-10-18T14:43:34Z) - Enhancing Automated Audio Captioning via Large Language Models with Optimized Audio Encoding [30.46616330202622]
Automated audio captioning (AAC) is an audio-to-text task to describe audio contents in natural language.
Recent advancements in large language models (LLMs) have opened up possibilities for improving AAC.
Our method obtains a 33.0 SPIDEr-FL score, outperforming the winner of DCASE 2023 Task 6A.
arXiv Detail & Related papers (2024-06-19T07:09:46Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
We introduce C3LLM, a novel framework combining three tasks of video-to-audio, audio-to-text, and text-to-audio together.
C3LLM adapts the Large Language Model (LLM) structure as a bridge for aligning different modalities.
Our method combines the previous tasks of audio understanding, video-to-audio generation, and text-to-audio generation together into one unified model.
arXiv Detail & Related papers (2024-05-25T09:10:12Z) - LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT [65.69648099999439]
Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks.
We propose LauraGPT, a novel unified audio-and-text GPT-based LLM for audio recognition, understanding, and generation.
arXiv Detail & Related papers (2023-10-07T03:17:59Z) - AV-CPL: Continuous Pseudo-Labeling for Audio-Visual Speech Recognition [27.58390468474957]
We introduce continuous pseudo-labeling for audio-visual speech recognition (AV-CPL)
AV-CPL is a semi-supervised method to train an audio-visual speech recognition model on a combination of labeled and unlabeled videos.
Our method uses the same audio-visual model for both supervised training and pseudo-label generation, mitigating the need for external speech recognition models to generate pseudo-labels.
arXiv Detail & Related papers (2023-09-29T16:57:21Z) - Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model
Adaptation [89.96013329530484]
We consider the task of generating diverse and realistic videos guided by natural audio samples from a wide variety of semantic classes.
We utilize an existing text-conditioned video generation model and a pre-trained audio encoder model.
We validate our method extensively on three datasets demonstrating significant semantic diversity of audio-video samples.
arXiv Detail & Related papers (2023-09-28T13:26:26Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
We propose an innovative, automatic approach to establish an audio dataset with high-quality captions.
Specifically, we construct a large-scale, high-quality, audio-language dataset, named as Auto-ACD, comprising over 1.5M audio-text pairs.
We employ LLM to paraphrase a congruent caption for each audio, guided by the extracted multi-modality clues.
arXiv Detail & Related papers (2023-09-20T17:59:32Z) - Zero-Shot Audio Captioning via Audibility Guidance [57.70351255180495]
We propose three desiderata for captioning audio -- (i) fluency of the generated text, (ii) faithfulness of the generated text to the input audio, and (iii) audibility.
Our method is a zero-shot method, i.e., we do not learn to perform captioning.
We present our results on the AudioCap dataset, demonstrating that audibility guidance significantly enhances performance compared to the baseline.
arXiv Detail & Related papers (2023-09-07T17:45:58Z) - Contrastive Audio-Visual Masked Autoencoder [85.53776628515561]
Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE)
Our fully self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on VGGSound.
arXiv Detail & Related papers (2022-10-02T07:29:57Z) - Evaluating Off-the-Shelf Machine Listening and Natural Language Models
for Automated Audio Captioning [16.977616651315234]
A captioning system has to identify various information from the input signal and express it with natural language.
We evaluate the performance of off-the-shelf models with a Transformer-based captioning approach.
arXiv Detail & Related papers (2021-10-14T14:42:38Z) - Unsupervised Audiovisual Synthesis via Exemplar Autoencoders [59.13989658692953]
We present an unsupervised approach that converts the input speech of any individual into audiovisual streams of potentially-infinitely many output speakers.
We use Exemplar Autoencoders to learn the voice, stylistic prosody, and visual appearance of a specific target speech exemplar.
arXiv Detail & Related papers (2020-01-13T18:56:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.