Block-based Symmetric Pruning and Fusion for Efficient Vision Transformers
- URL: http://arxiv.org/abs/2507.12125v1
- Date: Wed, 16 Jul 2025 10:48:56 GMT
- Title: Block-based Symmetric Pruning and Fusion for Efficient Vision Transformers
- Authors: Yi-Kuan Hsieh, Jun-Wei Hsieh, Xin Li, Yu-Ming Chang, Yu-Chee Tseng,
- Abstract summary: Vision Transformer (ViT) has achieved impressive results across various vision tasks.<n>Recent methods have aimed to reduce ViT's $O(n2)$ complexity by pruning unimportant tokens.<n>We introduce a novel bf Block-based Symmetric Pruning and Fusion for efficient ViT.
- Score: 11.916258576313776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformer (ViT) has achieved impressive results across various vision tasks, yet its high computational cost limits practical applications. Recent methods have aimed to reduce ViT's $O(n^2)$ complexity by pruning unimportant tokens. However, these techniques often sacrifice accuracy by independently pruning query (Q) and key (K) tokens, leading to performance degradation due to overlooked token interactions. To address this limitation, we introduce a novel {\bf Block-based Symmetric Pruning and Fusion} for efficient ViT (BSPF-ViT) that optimizes the pruning of Q/K tokens jointly. Unlike previous methods that consider only a single direction, our approach evaluates each token and its neighbors to decide which tokens to retain by taking token interaction into account. The retained tokens are compressed through a similarity fusion step, preserving key information while reducing computational costs. The shared weights of Q/K tokens create a symmetric attention matrix, allowing pruning only the upper triangular part for speed up. BSPF-ViT consistently outperforms state-of-the-art ViT methods at all pruning levels, increasing ImageNet classification accuracy by 1.3% on DeiT-T and 2.0% on DeiT-S, while reducing computational overhead by 50%. It achieves 40% speedup with improved accuracy across various ViTs.
Related papers
- Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation [57.56385490252605]
Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention.<n>We propose SVG2, a training-free framework that maximizes identification accuracy and computation minimizes waste.
arXiv Detail & Related papers (2025-05-24T21:30:29Z) - GTP-ViT: Efficient Vision Transformers via Graph-based Token Propagation [30.343504537684755]
Vision Transformers (ViTs) have revolutionized the field of computer vision, yet their deployments on resource-constrained devices remain challenging.
To expedite ViTs, token pruning and token merging approaches have been developed, which aim at reducing the number of tokens involved in computation.
We introduce a novel Graph-based Token Propagation (GTP) method to resolve the challenge of balancing model efficiency and information preservation for efficient ViTs.
arXiv Detail & Related papers (2023-11-06T11:14:19Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance.
We propose to apply adaptive resolution for different regions in the image according to their importance.
We evaluate our proposed method on three different datasets and observe promising performance.
arXiv Detail & Related papers (2023-11-02T12:48:43Z) - No Token Left Behind: Efficient Vision Transformer via Dynamic Token
Idling [55.203866875294516]
Vision Transformers (ViTs) have demonstrated outstanding performance in computer vision tasks.
Various token pruning techniques have been introduced to alleviate the high computational burden of ViTs.
We propose IdleViT, a dynamic token-idle-based method that achieves an excellent trade-off between performance and efficiency.
arXiv Detail & Related papers (2023-10-09T12:10:41Z) - Prune Spatio-temporal Tokens by Semantic-aware Temporal Accumulation [89.88214896713846]
STA score considers two critical factors: temporal redundancy and semantic importance.
We apply the STA module to off-the-shelf video Transformers and Videowins.
Results: Kinetics-400 and Something-Something V2 achieve 30% overshelf reduction with a negligible 0.2% accuracy drop.
arXiv Detail & Related papers (2023-08-08T19:38:15Z) - Revisiting Token Pruning for Object Detection and Instance Segmentation [25.3324628669201]
We investigate token pruning to accelerate inference for object and instance segmentation.
We show a reduction in performance decline from 1.5 mAP to 0.3 mAP in both boxes and masks, compared to existing token pruning methods.
arXiv Detail & Related papers (2023-06-12T11:55:33Z) - Multi-Scale And Token Mergence: Make Your ViT More Efficient [3.087140219508349]
Vision Transformer (ViT) has emerged as a prevalent model in the computer vision domain.
We propose a novel token pruning method that retains information from non-crucial tokens by merging them with more crucial tokens.
Our method achieves a remarkable 33% reduction in computational costs while only incurring a 0.1% decrease in accuracy on DeiT-S.
arXiv Detail & Related papers (2023-06-08T02:58:15Z) - Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing
Important Tokens [65.4435926060951]
We propose to significantly improve the efficiency of Transformers for ultra long sequences, by compressing the sequence into a much smaller representation at each layer.
Our algorithm is not only efficient (achieving more than $3times$ efficiency gain compared to baselines on 4K and 16K lengths) but also offers competitive/better performance on a large number of tasks.
arXiv Detail & Related papers (2023-05-07T10:32:18Z) - Joint Token Pruning and Squeezing Towards More Aggressive Compression of
Vision Transformers [2.0442992958844517]
We propose a novel Token Pruning & Squeezing module (TPS) for compressing vision transformers with higher efficiency.
TPS squeezes the information of pruned tokens into partial reserved tokens via the unidirectional nearest-neighbor matching and similarity-based fusing steps.
Our method can accelerate the throughput of DeiT-small beyond DeiT-tiny, while its accuracy surpasses DeiT-tiny by 4.78%.
arXiv Detail & Related papers (2023-04-21T02:59:30Z) - Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully
Exploiting Self-Attention [36.90363317158731]
We propose an adaptive sparse token pruning framework with a minimal cost.
Our method improves the throughput of DeiT-S by 50% and brings only 0.2% drop in top-1 accuracy.
arXiv Detail & Related papers (2022-09-28T03:07:32Z) - Parameterization of Cross-Token Relations with Relative Positional
Encoding for Vision MLP [52.25478388220691]
Vision multi-layer perceptrons (MLPs) have shown promising performance in computer vision tasks.
They use token-mixing layers to capture cross-token interactions, as opposed to the multi-head self-attention mechanism used by Transformers.
We propose a new positional spacial gating unit (PoSGU) to efficiently encode the cross-token relations for token mixing.
arXiv Detail & Related papers (2022-07-15T04:18:06Z) - DynamicViT: Efficient Vision Transformers with Dynamic Token
Sparsification [134.9393799043401]
We propose a dynamic token sparsification framework to prune redundant tokens based on the input.
By hierarchically pruning 66% of the input tokens, our method greatly reduces 31%37% FLOPs and improves the throughput by over 40%.
DynamicViT models can achieve very competitive complexity/accuracy trade-offs compared to state-of-the-art CNNs and vision transformers on ImageNet.
arXiv Detail & Related papers (2021-06-03T17:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.