Fine-Grained Image Recognition from Scratch with Teacher-Guided Data Augmentation
- URL: http://arxiv.org/abs/2507.12157v1
- Date: Wed, 16 Jul 2025 11:37:33 GMT
- Title: Fine-Grained Image Recognition from Scratch with Teacher-Guided Data Augmentation
- Authors: Edwin Arkel Rios, Fernando Mikael, Oswin Gosal, Femiloye Oyerinde, Hao-Chun Liang, Bo-Cheng Lai, Min-Chun Hu,
- Abstract summary: Fine-grained image recognition (FGIR) aims to distinguish visually similar sub-categories within a broader class, such as identifying bird species.<n>Most existing FGIR methods rely on backbones pretrained on large-scale datasets like ImageNet.<n>We introduce a novel training framework, TGDA, that integrates data-aware augmentation with weak supervision via a fine-grained-aware teacher model.
- Score: 40.72028191529961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-grained image recognition (FGIR) aims to distinguish visually similar sub-categories within a broader class, such as identifying bird species. While most existing FGIR methods rely on backbones pretrained on large-scale datasets like ImageNet, this dependence limits adaptability to resource-constrained environments and hinders the development of task-specific architectures tailored to the unique challenges of FGIR. In this work, we challenge the conventional reliance on pretrained models by demonstrating that high-performance FGIR systems can be trained entirely from scratch. We introduce a novel training framework, TGDA, that integrates data-aware augmentation with weak supervision via a fine-grained-aware teacher model, implemented through knowledge distillation. This framework unlocks the design of task-specific and hardware-aware architectures, including LRNets for low-resolution FGIR and ViTFS, a family of Vision Transformers optimized for efficient inference. Extensive experiments across three FGIR benchmarks over diverse settings involving low-resolution and high-resolution inputs show that our method consistently matches or surpasses state-of-the-art pretrained counterparts. In particular, in the low-resolution setting, LRNets trained with TGDA improve accuracy by up to 23\% over prior methods while requiring up to 20.6x less parameters, lower FLOPs, and significantly less training data. Similarly, ViTFS-T can match the performance of a ViT B-16 pretrained on ImageNet-21k while using 15.3x fewer trainable parameters and requiring orders of magnitudes less data. These results highlight TGDA's potential as an adaptable alternative to pretraining, paving the way for more efficient fine-grained vision systems.
Related papers
- Fine-grained Image Retrieval via Dual-Vision Adaptation [32.27084080471636]
Fine-Grained Image Retrieval (FGIR) faces challenges in learning discriminative visual representations to retrieve images with similar fine-grained features.<n>We propose a Dual-Vision Adaptation (DVA) approach for FGIR, which guides the frozen pre-trained model to perform FGIR through collaborative sample and feature adaptation.
arXiv Detail & Related papers (2025-06-19T12:46:55Z) - ScaleKD: Strong Vision Transformers Could Be Excellent Teachers [15.446480934024652]
We present a simple and effective knowledge distillation method, called ScaleKD.
Our method can train student backbones that span across a variety of convolutional neural network (CNN), multi-layer perceptron (MLP), and ViT architectures on image classification datasets.
When scaling up the size of teacher models or their pre-training datasets, our method showcases the desired scalable properties.
arXiv Detail & Related papers (2024-11-11T08:25:21Z) - Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
One main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations.<n>We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders.<n>The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs.
arXiv Detail & Related papers (2024-10-09T14:34:53Z) - An Experimental Study on Exploring Strong Lightweight Vision Transformers via Masked Image Modeling Pre-Training [51.622652121580394]
Masked image modeling (MIM) pre-training for large-scale vision transformers (ViTs) has enabled promising downstream performance on top of the learned self-supervised ViT features.
In this paper, we question if the textitextremely simple lightweight ViTs' fine-tuning performance can also benefit from this pre-training paradigm.
Our pre-training with distillation on pure lightweight ViTs with vanilla/hierarchical design ($5.7M$/$6.5M$) can achieve $79.4%$/$78.9%$ top-1 accuracy on ImageNet-1
arXiv Detail & Related papers (2024-04-18T14:14:44Z) - Pre-trained Vision and Language Transformers Are Few-Shot Incremental Learners [19.579098962615795]
Few-Shot Class Incremental Learning (FSCIL) is a task that requires a model to learn new classes incrementally without forgetting when only a few samples for each class are given.
FSCIL encounters two significant challenges: catastrophic forgetting and overfitting.
We argue that large models such as vision and language transformers pre-trained on large datasets can be excellent few-shot incremental learners.
arXiv Detail & Related papers (2024-04-02T17:23:22Z) - Efficient Training for Visual Tracking with Deformable Transformer [0.0]
We present DETRack, a streamlined end-to-end visual object tracking framework.
Our framework utilizes an efficient encoder-decoder structure where the deformable transformer decoder acting as a target head.
For training, we introduce a novel one-to-many label assignment and an auxiliary denoising technique.
arXiv Detail & Related papers (2023-09-06T03:07:43Z) - Strong Baselines for Parameter Efficient Few-Shot Fine-tuning [50.83426196335385]
Few-shot classification (FSC) entails learning novel classes given only a few examples per class after a pre-training (or meta-training) phase.
Recent works have shown that simply fine-tuning a pre-trained Vision Transformer (ViT) on new test classes is a strong approach for FSC.
Fine-tuning ViTs, however, is expensive in time, compute and storage.
This has motivated the design of parameter efficient fine-tuning (PEFT) methods which fine-tune only a fraction of the Transformer's parameters.
arXiv Detail & Related papers (2023-04-04T16:14:39Z) - GOHSP: A Unified Framework of Graph and Optimization-based Heterogeneous
Structured Pruning for Vision Transformer [76.2625311630021]
Vision transformers (ViTs) have shown very impressive empirical performance in various computer vision tasks.
To mitigate this challenging problem, structured pruning is a promising solution to compress model size and enable practical efficiency.
We propose GOHSP, a unified framework of Graph and Optimization-based Structured Pruning for ViT models.
arXiv Detail & Related papers (2023-01-13T00:40:24Z) - Teacher Guided Training: An Efficient Framework for Knowledge Transfer [86.6784627427194]
We propose the teacher-guided training (TGT) framework for training a high-quality compact model.
TGT exploits the fact that the teacher has acquired a good representation of the underlying data domain.
We find that TGT can improve accuracy on several image classification benchmarks and a range of text classification and retrieval tasks.
arXiv Detail & Related papers (2022-08-14T10:33:58Z) - Efficient Self-supervised Vision Transformers for Representation
Learning [86.57557009109411]
We show that multi-stage architectures with sparse self-attentions can significantly reduce modeling complexity.
We propose a new pre-training task of region matching which allows the model to capture fine-grained region dependencies.
Our results show that combining the two techniques, EsViT achieves 81.3% top-1 on the ImageNet linear probe evaluation.
arXiv Detail & Related papers (2021-06-17T19:57:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.