Hybrid Ensemble Approaches: Optimal Deep Feature Fusion and Hyperparameter-Tuned Classifier Ensembling for Enhanced Brain Tumor Classification
- URL: http://arxiv.org/abs/2507.12177v1
- Date: Wed, 16 Jul 2025 12:22:11 GMT
- Title: Hybrid Ensemble Approaches: Optimal Deep Feature Fusion and Hyperparameter-Tuned Classifier Ensembling for Enhanced Brain Tumor Classification
- Authors: Zahid Ullah, Dragan Pamucar, Jihie Kim,
- Abstract summary: This study proposes a novel double ensembling framework, consisting of ensembled pre-trained deep learning (DL) models for feature extraction and ensembled fine-tuned machine learning (ML) models to efficiently classify brain tumors.<n>Specifically, our method includes extensive preprocessing and augmentation, transfer learning concepts by utilizing various pre-trained deep convolutional neural networks and vision transformer networks to extract deep features from brain MRI.
- Score: 24.801687550103217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magnetic Resonance Imaging (MRI) is widely recognized as the most reliable tool for detecting tumors due to its capability to produce detailed images that reveal their presence. However, the accuracy of diagnosis can be compromised when human specialists evaluate these images. Factors such as fatigue, limited expertise, and insufficient image detail can lead to errors. For example, small tumors might go unnoticed, or overlap with healthy brain regions could result in misidentification. To address these challenges and enhance diagnostic precision, this study proposes a novel double ensembling framework, consisting of ensembled pre-trained deep learning (DL) models for feature extraction and ensembled fine-tuned hyperparameter machine learning (ML) models to efficiently classify brain tumors. Specifically, our method includes extensive preprocessing and augmentation, transfer learning concepts by utilizing various pre-trained deep convolutional neural networks and vision transformer networks to extract deep features from brain MRI, and fine-tune hyperparameters of ML classifiers. Our experiments utilized three different publicly available Kaggle MRI brain tumor datasets to evaluate the pre-trained DL feature extractor models, ML classifiers, and the effectiveness of an ensemble of deep features along with an ensemble of ML classifiers for brain tumor classification. Our results indicate that the proposed feature fusion and classifier fusion improve upon the state of the art, with hyperparameter fine-tuning providing a significant enhancement over the ensemble method. Additionally, we present an ablation study to illustrate how each component contributes to accurate brain tumor classification.
Related papers
- Hierarchical Deep Feature Fusion and Ensemble Learning for Enhanced Brain Tumor MRI Classification [3.776159955137874]
The framework incorporates comprehensive preprocessing and data augmentation of brain magnetic resonance images (MRI)<n>The novelty lies in the dual-level ensembling strategy: feature-level ensembling, and classifier-level ensembling.<n> Experiments on two public Kaggle MRI brain tumor datasets demonstrate that this approach significantly surpasses state-of-the-art methods.
arXiv Detail & Related papers (2025-06-14T05:53:54Z) - Light Weight CNN for classification of Brain Tumors from MRI Images [0.0]
This study presents a convolutional neural network (CNN)-based approach for the multi-class classification of brain tumors.<n>We utilize a publicly available dataset containing MRI images categorized into four classes: glioma, meningioma, pituitary tumor, and no tumor.<n> Experimental results demonstrate that the proposed model achieves a classification accuracy of 98.78%, indicating its potential as a diagnostic aid in clinical settings.
arXiv Detail & Related papers (2025-04-29T21:45:11Z) - MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
We propose MAST-Pro, a novel framework that integrates dynamic Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmentation.<n>Specifically, text and anatomical prompts provide domain-specific priors guiding tumor representation learning, while D-MoE dynamically selects experts to balance generic and tumor-specific feature learning.<n>Experiments on multi-anatomical tumor datasets demonstrate that MAST-Pro outperforms state-of-the-art approaches, achieving up to a 5.20% improvement in average improvement while reducing trainable parameters by 91.04%, without compromising accuracy.
arXiv Detail & Related papers (2025-03-18T15:39:44Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Robust Brain MRI Image Classification with SIBOW-SVM [1.3597551064547502]
Early detection of brain tumor types is critical for cancer prevention and treatment, ultimately improving human life expectancy.
MRI stands as the most effective technique to detect brain tumors by generating comprehensive brain images through scans.
Deep learning-based image classification methods, including CNN, face challenges in estimating class probabilities without proper model calibration.
We propose a novel brain tumor image classification method, called SIBOW-SVM, which integrates the Bag-of-Features (BoF) model with SIFT feature extraction and weighted Support Vector Machines (wSVMs)
Our results show that the new method outperforms state-of-the-art
arXiv Detail & Related papers (2023-11-15T12:26:24Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
Two-phase deep learning-based framework is proposed to detect and categorize brain tumors in magnetic resonance images (MRIs)
In the first phase, a novel deep boosted features and ensemble classifiers (DBF-EC) scheme is proposed to detect tumor MRI images from healthy individuals effectively.
In the second phase, a new hybrid features fusion-based brain tumor classification approach is proposed, comprised of dynamic-static feature and ML classifier to categorize different tumor types.
arXiv Detail & Related papers (2022-01-14T10:24:47Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.