Asymptotic behavior of eigenvalues of large rank perturbations of large random matrices
- URL: http://arxiv.org/abs/2507.12182v1
- Date: Wed, 16 Jul 2025 12:29:23 GMT
- Title: Asymptotic behavior of eigenvalues of large rank perturbations of large random matrices
- Authors: Ievgenii Afanasiev, Leonid Berlyand, Mariia Kiyashko,
- Abstract summary: The paper is concerned with deformed Wigner random matrices.<n>The spectrum of such matrices plays a key role in rigorous underpinning of the novel pruning technique.<n>In this paper we develop analysis for the case of growing rank.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper is concerned with deformed Wigner random matrices. These matrices are closely connected with Deep Neural Networks (DNNs): weight matrices of trained DNNs could be represented in the form $R + S$, where $R$ is random and $S$ is highly correlated. The spectrum of such matrices plays a key role in rigorous underpinning of the novel pruning technique based on Random Matrix Theory. Mathematics has been done only for finite-rank matrix $S$. However, in practice rank may grow. In this paper we develop asymptotic analysis for the case of growing rank.
Related papers
- Optimal Quantization for Matrix Multiplication [35.007966885532724]
We build a universal quantizer based on nested lattices with an explicit guarantee of approximation error.<n>A practical low-complexity version of our quantizer achieves performance quite close to optimal.
arXiv Detail & Related papers (2024-10-17T17:19:48Z) - Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
Global Covariance Pooling (GCP) has been demonstrated to improve the performance of Deep Neural Networks (DNNs) by exploiting second-order statistics of high-level representations.<n>This paper provides a comprehensive and unified understanding of the matrix logarithm and power from a Riemannian geometry perspective.
arXiv Detail & Related papers (2024-07-15T07:11:44Z) - On MDS Property of g-Circulant Matrices [3.069335774032178]
We first discuss $g$-circulant matrices with involutory and MDS properties.
We then delve into $g$-circulant semi-involutory and semi-orthogonal matrices with entries from finite fields.
arXiv Detail & Related papers (2024-06-22T15:18:31Z) - Stochastic Rounding Implicitly Regularizes Tall-and-Thin Matrices [5.324425600601921]
We consider nearness rounding of real $mathbfA$ with many more rows than columns.<n>With high probability, the smallest singular value of a rounded matrix is well bounded away from zero.<n>We leverage powerful results in random matrix theory, and the idea that rounding errors do not concentrate in low-dimensional column spaces.
arXiv Detail & Related papers (2024-03-18T21:53:56Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
We propose a natural algorithm that involves imputing the missing values of the matrix $XTX$.
We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing.
arXiv Detail & Related papers (2023-06-06T22:35:16Z) - Largest Eigenvalues of the Conjugate Kernel of Single-Layered Neural
Networks [0.0]
We show that the largest eigenvalue has the same limit (in probability) as that of some well-known linear random matrix ensembles.
This may be of interest for applications to machine learning.
arXiv Detail & Related papers (2022-01-13T00:48:20Z) - When Random Tensors meet Random Matrices [50.568841545067144]
This paper studies asymmetric order-$d$ spiked tensor models with Gaussian noise.
We show that the analysis of the considered model boils down to the analysis of an equivalent spiked symmetric textitblock-wise random matrix.
arXiv Detail & Related papers (2021-12-23T04:05:01Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
We present dimensionality reduction methods for non-PSD and square-roots" matrices.
We show how these techniques can be used for multiple downstream tasks.
arXiv Detail & Related papers (2021-06-16T04:07:48Z) - Algebraic and geometric structures inside the Birkhoff polytope [0.0]
Birkhoff polytope $mathcalB_d$ consists of all bistochastic matrices of order $d$.
We prove that $mathcalL_d$ and $mathcalF_d$ are star-shaped with respect to the flat matrix.
arXiv Detail & Related papers (2021-01-27T09:51:24Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
We show that learning $ktimes k$, rank-$r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ samples.
We propose an algorithm that uses $cal O(frackrepsilon2log2fracepsilon)$ samples, a number linear in the high dimension, and nearly linear in the matrices, typically low, rank proofs.
arXiv Detail & Related papers (2020-09-30T19:10:32Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.