FADE: Adversarial Concept Erasure in Flow Models
- URL: http://arxiv.org/abs/2507.12283v1
- Date: Wed, 16 Jul 2025 14:31:21 GMT
- Title: FADE: Adversarial Concept Erasure in Flow Models
- Authors: Zixuan Fu, Yan Ren, Finn Carter, Chenyue Wang, Ze Niu, Dacheng Yu, Emily Davis, Bo Zhang,
- Abstract summary: We propose a novel textbfconcept erasure method for text-to-image diffusion models.<n>Our method combines a trajectory-aware fine-tuning strategy with an adversarial objective to ensure the concept is reliably removed.<n>We prove a formal guarantee that our approach minimizes the mutual information between the erased concept and the model's outputs.
- Score: 4.774890908509861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated remarkable image generation capabilities, but also pose risks in privacy and fairness by memorizing sensitive concepts or perpetuating biases. We propose a novel \textbf{concept erasure} method for text-to-image diffusion models, designed to remove specified concepts (e.g., a private individual or a harmful stereotype) from the model's generative repertoire. Our method, termed \textbf{FADE} (Fair Adversarial Diffusion Erasure), combines a trajectory-aware fine-tuning strategy with an adversarial objective to ensure the concept is reliably removed while preserving overall model fidelity. Theoretically, we prove a formal guarantee that our approach minimizes the mutual information between the erased concept and the model's outputs, ensuring privacy and fairness. Empirically, we evaluate FADE on Stable Diffusion and FLUX, using benchmarks from prior work (e.g., object, celebrity, explicit content, and style erasure tasks from MACE). FADE achieves state-of-the-art concept removal performance, surpassing recent baselines like ESD, UCE, MACE, and ANT in terms of removal efficacy and image quality. Notably, FADE improves the harmonic mean of concept removal and fidelity by 5--10\% over the best prior method. We also conduct an ablation study to validate each component of FADE, confirming that our adversarial and trajectory-preserving objectives each contribute to its superior performance. Our work sets a new standard for safe and fair generative modeling by unlearning specified concepts without retraining from scratch.
Related papers
- TRACE: Trajectory-Constrained Concept Erasure in Diffusion Models [0.0]
Concept erasure aims to remove or suppress specific concept information in a generative model.<n>Trajectory-Constrained Attentional Concept Erasure (TRACE) is a novel method to erase targeted concepts from diffusion models.<n>TRACE achieves state-of-the-art performance, outperforming recent methods such as ANT, EraseAnything, and MACE in terms of removal efficacy and output quality.
arXiv Detail & Related papers (2025-05-29T10:15:22Z) - ACE: Attentional Concept Erasure in Diffusion Models [0.0]
Attentional Concept Erasure integrates a closed-form attention manipulation with lightweight fine-tuning.<n>We show that ACE achieves state-of-the-art concept removal efficacy and robustness.<n>Compared to prior methods, ACE better balances generality (erasing concept and related terms) and specificity (preserving unrelated content)
arXiv Detail & Related papers (2025-04-16T08:16:28Z) - Fine-Grained Erasure in Text-to-Image Diffusion-based Foundation Models [56.35484513848296]
FADE (Fine grained Attenuation for Diffusion Erasure) is an adjacency-aware unlearning algorithm for text-to-image generative models.<n>It removes target concepts with minimal impact on correlated concepts, achieving a 12% improvement in retention performance over state-of-the-art methods.
arXiv Detail & Related papers (2025-03-25T15:49:48Z) - Continual Unlearning for Foundational Text-to-Image Models without Generalization Erosion [56.35484513848296]
This research introduces continual unlearning', a novel paradigm that enables the targeted removal of multiple specific concepts from foundational generative models.<n>We propose Decremental Unlearning without Generalization Erosion (DUGE) algorithm which selectively unlearns the generation of undesired concepts.
arXiv Detail & Related papers (2025-03-17T23:17:16Z) - TRCE: Towards Reliable Malicious Concept Erasure in Text-to-Image Diffusion Models [45.393001061726366]
Recent advances in text-to-image diffusion models enable photorealistic image generation, but they also risk producing malicious content, such as NSFW images.<n>To mitigate risk, concept erasure methods are studied to facilitate the model to unlearn specific concepts.<n>We propose TRCE, using a two-stage concept erasure strategy to achieve an effective trade-off between reliable erasure and knowledge preservation.
arXiv Detail & Related papers (2025-03-10T14:37:53Z) - DuMo: Dual Encoder Modulation Network for Precise Concept Erasure [75.05165577219425]
We propose our Dual encoder Modulation network (DuMo) which achieves precise erasure of inappropriate target concepts with minimum impairment to non-target concepts.<n>Our method achieves state-of-the-art performance on Explicit Content Erasure, Cartoon Concept Removal and Artistic Style Erasure, clearly outperforming alternative methods.
arXiv Detail & Related papers (2025-01-02T07:47:34Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
We propose a method called SDD to prevent problematic content generation in text-to-image diffusion models.
Our method eliminates a much greater proportion of harmful content from the generated images without degrading the overall image quality.
arXiv Detail & Related papers (2023-07-12T07:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.