Compositional Discrete Latent Code for High Fidelity, Productive Diffusion Models
- URL: http://arxiv.org/abs/2507.12318v2
- Date: Thu, 17 Jul 2025 15:27:20 GMT
- Title: Compositional Discrete Latent Code for High Fidelity, Productive Diffusion Models
- Authors: Samuel Lavoie, Michael Noukhovitch, Aaron Courville,
- Abstract summary: We introduce Discrete Latent Code (DLC), an image representation derived from Simplicial Embeddings trained with a self-supervised learning objective.<n>DLCs are sequences of discrete tokens, as opposed to the standard continuous image embeddings.<n>They are easy to generate and their compositionality enables sampling of novel images beyond the training distribution.
- Score: 1.9129789494874188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We argue that diffusion models' success in modeling complex distributions is, for the most part, coming from their input conditioning. This paper investigates the representation used to condition diffusion models from the perspective that ideal representations should improve sample fidelity, be easy to generate, and be compositional to allow out-of-training samples generation. We introduce Discrete Latent Code (DLC), an image representation derived from Simplicial Embeddings trained with a self-supervised learning objective. DLCs are sequences of discrete tokens, as opposed to the standard continuous image embeddings. They are easy to generate and their compositionality enables sampling of novel images beyond the training distribution. Diffusion models trained with DLCs have improved generation fidelity, establishing a new state-of-the-art for unconditional image generation on ImageNet. Additionally, we show that composing DLCs allows the image generator to produce out-of-distribution samples that coherently combine the semantics of images in diverse ways. Finally, we showcase how DLCs can enable text-to-image generation by leveraging large-scale pretrained language models. We efficiently finetune a text diffusion language model to generate DLCs that produce novel samples outside of the image generator training distribution.
Related papers
- DreamDistribution: Learning Prompt Distribution for Diverse In-distribution Generation [51.24734569887687]
We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts.<n>These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions.<n>We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D.
arXiv Detail & Related papers (2023-12-21T12:11:00Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Reverse Stable Diffusion: What prompt was used to generate this image? [73.10116197883303]
We study the task of predicting the prompt embedding given an image generated by a generative diffusion model.
We propose a novel learning framework comprising a joint prompt regression and multi-label vocabulary classification objective.
We conduct experiments on the DiffusionDB data set, predicting text prompts from images generated by Stable Diffusion.
arXiv Detail & Related papers (2023-08-02T23:39:29Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
This work proposes to enhance prompt understanding capabilities in text-to-image diffusion models.
Our method leverages a pretrained large language model for grounded generation in a novel two-stage process.
Our method significantly outperforms the base diffusion model and several strong baselines in accurately generating images.
arXiv Detail & Related papers (2023-05-23T03:59:06Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z) - Generating images of rare concepts using pre-trained diffusion models [32.5337654536764]
Text-to-image diffusion models can synthesize high-quality images, but they have various limitations.
We show that their limitation is partly due to the long-tail nature of their training data.
We show that rare concepts can be correctly generated by carefully selecting suitable generation seeds in the noise space.
arXiv Detail & Related papers (2023-04-27T20:55:38Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.