A Novel Data Augmentation Strategy for Robust Deep Learning Classification of Biomedical Time-Series Data: Application to ECG and EEG Analysis
- URL: http://arxiv.org/abs/2507.12645v1
- Date: Wed, 16 Jul 2025 21:38:10 GMT
- Title: A Novel Data Augmentation Strategy for Robust Deep Learning Classification of Biomedical Time-Series Data: Application to ECG and EEG Analysis
- Authors: Mohammed Guhdar, Ramadhan J. Mstafa, Abdulhakeem O. Mohammed,
- Abstract summary: This study proposes a novel and unified deep learning framework that achieves state-of-the-art performance across different signal types.<n>Unlike prior work, we scientifically increase signal complexity to achieve future-reaching capabilities, which resulted in the best predictions.<n>The architecture requires 130 MB of memory and processes each sample in 10 ms, suggesting suitability for deployment on low-end or wearable devices.
- Score: 2.355460994057843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing need for accurate and unified analysis of diverse biological signals, such as ECG and EEG, is paramount for comprehensive patient assessment, especially in synchronous monitoring. Despite advances in multi-sensor fusion, a critical gap remains in developing unified architectures that effectively process and extract features from fundamentally different physiological signals. Another challenge is the inherent class imbalance in many biomedical datasets, often causing biased performance in traditional methods. This study addresses these issues by proposing a novel and unified deep learning framework that achieves state-of-the-art performance across different signal types. Our method integrates a ResNet-based CNN with an attention mechanism, enhanced by a novel data augmentation strategy: time-domain concatenation of multiple augmented variants of each signal to generate richer representations. Unlike prior work, we scientifically increase signal complexity to achieve future-reaching capabilities, which resulted in the best predictions compared to the state of the art. Preprocessing steps included wavelet denoising, baseline removal, and standardization. Class imbalance was effectively managed through the combined use of this advanced data augmentation and the Focal Loss function. Regularization techniques were applied during training to ensure generalization. We rigorously evaluated the proposed architecture on three benchmark datasets: UCI Seizure EEG, MIT-BIH Arrhythmia, and PTB Diagnostic ECG. It achieved accuracies of 99.96%, 99.78%, and 100%, respectively, demonstrating robustness across diverse signal types and clinical contexts. Finally, the architecture requires ~130 MB of memory and processes each sample in ~10 ms, suggesting suitability for deployment on low-end or wearable devices.
Related papers
- PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation [18.978031999678507]
A novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals.<n>Two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks.<n>A unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion.
arXiv Detail & Related papers (2025-06-12T05:11:41Z) - Towards Robust Multimodal Physiological Foundation Models: Handling Arbitrary Missing Modalities [9.785262633953794]
Physio Omni is a foundation model for multimodal physiological signal analysis.<n>It trains a decoupled multimodal tokenizer, enabling masked signal pre-training.<n>It achieves state-of-the-art performance while maintaining strong robustness to missing modalities.
arXiv Detail & Related papers (2025-04-28T09:00:04Z) - BioSerenity-E1: a self-supervised EEG model for medical applications [0.0]
BioSerenity-E1 is a family of self-supervised foundation models for clinical EEG applications.<n>It combines spectral tokenization with masked prediction to achieve state-of-the-art performance across relevant diagnostic tasks.
arXiv Detail & Related papers (2025-03-13T13:42:46Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)<n>Our tokenization scheme represents EEG signals at a per-channel patch.<n>We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.<n>Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.<n>The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - Boosting Masked ECG-Text Auto-Encoders as Discriminative Learners [10.088785685439134]
We propose D-BETA, a framework that pre-trains ECG and text data using a contrastive masked auto-encoder architecture.<n>D-BETA uniquely combines the strengths of generative with boosted discriminative capabilities to achieve robust cross-modal representations.
arXiv Detail & Related papers (2024-10-03T01:24:09Z) - Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
This study introduces an innovative approach to the synthesis of Electroencephalogram (EEG) signals by integrating diffusion models with reinforcement learning.
Our methodology enhances the generation of EEG signals with detailed temporal and spectral features, enriching the authenticity and diversity of synthetic datasets.
arXiv Detail & Related papers (2024-09-14T07:22:31Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.