Physics constrained learning of stochastic characteristics
- URL: http://arxiv.org/abs/2507.12661v1
- Date: Wed, 16 Jul 2025 22:31:29 GMT
- Title: Physics constrained learning of stochastic characteristics
- Authors: Pardha Sai Krishna Ala, Ameya Salvi, Venkat Krovi, Matthias Schmid,
- Abstract summary: An error in the selection of covariance matrices could impact the accuracy of the estimation algorithm and may sometimes cause the filter to diverge.<n>We present a learning-based methodology with different loss functions to identify noise characteristics and test these approaches' performance for real-time vehicle state estimation.
- Score: 3.312377336651664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate state estimation requires careful consideration of uncertainty surrounding the process and measurement models; these characteristics are usually not well-known and need an experienced designer to select the covariance matrices. An error in the selection of covariance matrices could impact the accuracy of the estimation algorithm and may sometimes cause the filter to diverge. Identifying noise characteristics has long been a challenging problem due to uncertainty surrounding noise sources and difficulties in systematic noise modeling. Most existing approaches try identifying unknown covariance matrices through an optimization algorithm involving innovation sequences. In recent years, learning approaches have been utilized to determine the stochastic characteristics of process and measurement models. We present a learning-based methodology with different loss functions to identify noise characteristics and test these approaches' performance for real-time vehicle state estimation
Related papers
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Nonparametric Evaluation of Noisy ICA Solutions [5.749787074942513]
Independent Component Analysis (ICA) was introduced in the 1980's as a model for Blind Source Separation (BSS)
We develop a nonparametric score to adaptively pick the right algorithm for ICA with arbitrary Gaussian noise.
arXiv Detail & Related papers (2024-01-16T16:18:17Z) - It's All in the Mix: Wasserstein Classification and Regression with Mixed Features [5.106912532044251]
We develop and analyze distributionally robust prediction models that faithfully account for the presence of discrete features.<n>We demonstrate that our models can significantly outperform existing methods that are agnostic to the presence of discrete features.
arXiv Detail & Related papers (2023-12-19T15:15:52Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Adaptive Fake Audio Detection with Low-Rank Model Squeezing [50.7916414913962]
Traditional approaches, such as finetuning, are computationally intensive and pose a risk of impairing the acquired knowledge of known fake audio types.
We introduce the concept of training low-rank adaptation matrices tailored specifically to the newly emerging fake audio types.
Our approach offers several advantages, including reduced storage memory requirements and lower equal error rates.
arXiv Detail & Related papers (2023-06-08T06:06:42Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
We develop a novel framework to identify parsimonious governing equations of nonlinear (spatiotemporal) dynamics from sparse, noisy data with quantified uncertainty.
The proposed algorithm is evaluated on multiple nonlinear dynamical systems governed by canonical ordinary and partial differential equations.
arXiv Detail & Related papers (2022-10-14T20:37:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Deep Active Learning with Noise Stability [24.54974925491753]
Uncertainty estimation for unlabeled data is crucial to active learning.
We propose a novel algorithm that leverages noise stability to estimate data uncertainty.
Our method is generally applicable in various tasks, including computer vision, natural language processing, and structural data analysis.
arXiv Detail & Related papers (2022-05-26T13:21:01Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
We propose two new active learning algorithms for the Gaussian process with uncertainties.
We show that the proposed approach can incorporate the impact from uncertainties, and realize better prediction performance.
This approach has been applied to improving the predictive modeling for automatic shape control of composite fuselage.
arXiv Detail & Related papers (2020-04-23T02:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.