Multi-Channel Graph Neural Network for Financial Risk Prediction of NEEQ Enterprises
- URL: http://arxiv.org/abs/2507.12787v1
- Date: Thu, 17 Jul 2025 04:57:51 GMT
- Title: Multi-Channel Graph Neural Network for Financial Risk Prediction of NEEQ Enterprises
- Authors: Jianyu Zhu,
- Abstract summary: We propose a multi-channel deep learning framework that integrates structured financial indicators, textual disclosures, and enterprise relationship data for comprehensive financial risk prediction.<n>We show that our model significantly outperforms traditional machine learning methods and single-modality baselines in terms of AUC, Precision, Recall, and F1 Score.<n>This work provides theoretical and practical insights into risk modeling for SMEs and offers a data-driven tool to support financial regulators and investors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the continuous evolution of China's multi-level capital market, the National Equities Exchange and Quotations (NEEQ), also known as the "New Third Board," has become a critical financing platform for small and medium-sized enterprises (SMEs). However, due to their limited scale and financial resilience, many NEEQ-listed companies face elevated risks of financial distress. To address this issue, we propose a multi-channel deep learning framework that integrates structured financial indicators, textual disclosures, and enterprise relationship data for comprehensive financial risk prediction. Specifically, we design a Triple-Channel Graph Isomorphism Network (GIN) that processes numeric, textual, and graph-based inputs separately. These modality-specific representations are fused using an attention-based mechanism followed by a gating unit to enhance robustness and prediction accuracy. Experimental results on data from 7,731 real-world NEEQ companies demonstrate that our model significantly outperforms traditional machine learning methods and single-modality baselines in terms of AUC, Precision, Recall, and F1 Score. This work provides theoretical and practical insights into risk modeling for SMEs and offers a data-driven tool to support financial regulators and investors.
Related papers
- Agentar-Fin-R1: Enhancing Financial Intelligence through Domain Expertise, Training Efficiency, and Advanced Reasoning [12.548390779247987]
We introduce the Agentar-Fin-R1 series of financial large language models.<n>Our optimization approach integrates a high-quality, systematic financial task label system.<n>Our models undergo comprehensive evaluation on mainstream financial benchmarks.
arXiv Detail & Related papers (2025-07-22T17:52:16Z) - Advancing Financial Engineering with Foundation Models: Progress, Applications, and Challenges [28.826156528571424]
Financial Foundation Models (FFMs) are a new class of models explicitly designed for finance.<n>This survey presents a comprehensive overview of FFMs, with a taxonomy spanning three key modalities.<n>We review their architectures, training methodologies, datasets, and real-world applications.
arXiv Detail & Related papers (2025-07-07T16:06:38Z) - FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting [58.70072722290475]
Financial time series (FinTS) record the behavior of human-brain-augmented decision-making.<n>FinTSB is a comprehensive and practical benchmark for financial time series forecasting.
arXiv Detail & Related papers (2025-02-26T05:19:16Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - A Survey of Financial AI: Architectures, Advances and Open Challenges [0.6798775532273751]
Financial AI empowers sophisticated approaches to financial market forecasting, portfolio optimization, and automated trading.
This survey provides a systematic analysis of these developments across three primary dimensions.
arXiv Detail & Related papers (2024-11-01T04:16:00Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - Predictive AI for SME and Large Enterprise Financial Performance
Management [0.0]
I introduce a new set of financial and macroeconomic ratios that supplement standard ratios of Balance Sheet and Income Statement.
I also provide a set of supervised learning models (ML Regressors and Neural Networks) and Bayesian models to predict company performance.
I conclude that the new proposed variables improve model accuracy when used in tandem with standard industry ratios.
arXiv Detail & Related papers (2023-09-22T11:04:32Z) - FinPT: Financial Risk Prediction with Profile Tuning on Pretrained
Foundation Models [32.7825479037623]
FinPT is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models.
FinBench is a set of high-quality datasets on financial risks such as default, fraud, and churn.
arXiv Detail & Related papers (2023-07-22T09:27:05Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Financial Distress Prediction For Small And Medium Enterprises Using
Machine Learning Techniques [5.301137510638804]
Financial Distress Prediction plays a crucial role in the economy by accurately forecasting the number and probability of failing structures.
However, predicting financial distress for Small and Medium Enterprises is challenging due to their inherent ambiguity.
We propose a corporate FCP model that better aligns with industry practice and incorporates the gathering of thin-head component analysis of financial data, corporate governance qualities, and market exchange data with a Relevant Vector Machine.
arXiv Detail & Related papers (2023-02-23T15:58:30Z) - Heterogeneous Information Network based Default Analysis on Banking
Micro and Small Enterprise Users [18.32345474014549]
We consider a graph of banking data, and propose a novel HIDAM model for the purpose.
To enhance feature representation of MSEs, we extract interactive information through meta-paths and fully exploit path information.
Experimental results verify that HIDAM outperforms state-of-the-art competitors on real-world banking data.
arXiv Detail & Related papers (2022-04-24T11:26:12Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.