Autoregressive Speech Enhancement via Acoustic Tokens
- URL: http://arxiv.org/abs/2507.12825v1
- Date: Thu, 17 Jul 2025 06:32:22 GMT
- Title: Autoregressive Speech Enhancement via Acoustic Tokens
- Authors: Luca Della Libera, Cem Subakan, Mirco Ravanelli,
- Abstract summary: We study the performance of acoustic tokens for speech enhancement and introduce a novel transducer-based autoregressive architecture.<n>Experiments on VoiceBank and Libri1 datasets show that acoustic tokens outperform semantic tokens in terms of preserving speaker identity.
- Score: 12.77742493025067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In speech processing pipelines, improving the quality and intelligibility of real-world recordings is crucial. While supervised regression is the primary method for speech enhancement, audio tokenization is emerging as a promising alternative for a smooth integration with other modalities. However, research on speech enhancement using discrete representations is still limited. Previous work has mainly focused on semantic tokens, which tend to discard key acoustic details such as speaker identity. Additionally, these studies typically employ non-autoregressive models, assuming conditional independence of outputs and overlooking the potential improvements offered by autoregressive modeling. To address these gaps we: 1) conduct a comprehensive study of the performance of acoustic tokens for speech enhancement, including the effect of bitrate and noise strength; 2) introduce a novel transducer-based autoregressive architecture specifically designed for this task. Experiments on VoiceBank and Libri1Mix datasets show that acoustic tokens outperform semantic tokens in terms of preserving speaker identity, and that our autoregressive approach can further improve performance. Nevertheless, we observe that discrete representations still fall short compared to continuous ones, highlighting the need for further research in this area.
Related papers
- Speech Tokenizer is Key to Consistent Representation [0.0]
Speech tokenization is crucial in digital speech processing, converting continuous speech signals into discrete units for various computational tasks.<n>We propose an advanced approach that simultaneously encodes both linguistic and acoustic information, preserving prosodic and emotional content.<n> Empirical evaluations demonstrate its effectiveness in speech coding, voice conversion, emotion recognition, and multimodal language modeling, without requiring additional training.
arXiv Detail & Related papers (2025-07-09T12:43:39Z) - Discrete Audio Tokens: More Than a Survey! [107.69720675124255]
This paper presents a systematic review and benchmark of discrete audio tokenizers.<n>It covers speech, music, and general audio domains.<n>We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains.
arXiv Detail & Related papers (2025-06-12T01:35:43Z) - dMel: Speech Tokenization made Simple [16.679015298503593]
We introduce a novel speech representation (dmel) that discretizes mel-filterbank channels into intensity bins.<n>Our approach demonstrates superior performance in preserving audio content, robustness to out-of-domain data, and offers a training-free, natural, and streamable representation.
arXiv Detail & Related papers (2024-07-22T17:51:53Z) - Self-supervised Fine-tuning for Improved Content Representations by
Speaker-invariant Clustering [78.2927924732142]
We propose speaker-invariant clustering (Spin) as a novel self-supervised learning method.
Spin disentangles speaker information and preserves content representations with just 45 minutes of fine-tuning on a single GPU.
arXiv Detail & Related papers (2023-05-18T15:59:36Z) - SPADE: Self-supervised Pretraining for Acoustic DisEntanglement [2.294014185517203]
We introduce a self-supervised approach to disentangle room acoustics from speech.
Our results demonstrate that our proposed approach significantly improves performance over a baseline when labeled training data is scarce.
arXiv Detail & Related papers (2023-02-03T01:36:38Z) - Towards Disentangled Speech Representations [65.7834494783044]
We construct a representation learning task based on joint modeling of ASR and TTS.
We seek to learn a representation of audio that disentangles that part of the speech signal that is relevant to transcription from that part which is not.
We show that enforcing these properties during training improves WER by 24.5% relative on average for our joint modeling task.
arXiv Detail & Related papers (2022-08-28T10:03:55Z) - Data Augmentation based Consistency Contrastive Pre-training for
Automatic Speech Recognition [18.303072203996347]
Self-supervised acoustic pre-training has achieved amazing results on the automatic speech recognition (ASR) task.
Most of the successful acoustic pre-training methods use contrastive learning to learn the acoustic representations.
In this letter, we design a novel consistency contrastive learning (CCL) method by utilizing data augmentation for acoustic pre-training.
arXiv Detail & Related papers (2021-12-23T13:23:17Z) - Augmentation adversarial training for self-supervised speaker
recognition [49.47756927090593]
We train robust speaker recognition models without speaker labels.
Experiments on VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision.
arXiv Detail & Related papers (2020-07-23T15:49:52Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
This paper investigates a self-adaptation method for speech enhancement using auxiliary speaker-aware features.
We extract a speaker representation used for adaptation directly from the test utterance.
arXiv Detail & Related papers (2020-02-14T05:05:36Z) - Multi-task self-supervised learning for Robust Speech Recognition [75.11748484288229]
This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments.
We employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances.
We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks.
arXiv Detail & Related papers (2020-01-25T00:24:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.