Topology-Aware Activation Functions in Neural Networks
- URL: http://arxiv.org/abs/2507.12874v1
- Date: Thu, 17 Jul 2025 07:48:36 GMT
- Title: Topology-Aware Activation Functions in Neural Networks
- Authors: Pavel Snopov, Oleg R. Musin,
- Abstract summary: This study explores novel activation functions that enhance the ability of neural networks to manipulate data topology during training.<n>We propose $mathrmSmoothSplit$ and $mathrmParametricSplit$, which introduce topology "cutting" capabilities.<n>Our findings highlight the potential of topology-aware activation functions in advancing neural network architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores novel activation functions that enhance the ability of neural networks to manipulate data topology during training. Building on the limitations of traditional activation functions like $\mathrm{ReLU}$, we propose $\mathrm{SmoothSplit}$ and $\mathrm{ParametricSplit}$, which introduce topology "cutting" capabilities. These functions enable networks to transform complex data manifolds effectively, improving performance in scenarios with low-dimensional layers. Through experiments on synthetic and real-world datasets, we demonstrate that $\mathrm{ParametricSplit}$ outperforms traditional activations in low-dimensional settings while maintaining competitive performance in higher-dimensional ones. Our findings highlight the potential of topology-aware activation functions in advancing neural network architectures. The code is available via https://github.com/Snopoff/Topology-Aware-Activations.
Related papers
- Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization [66.03821840425539]
In this paper, we investigate the training dynamics of $L$-layer neural networks using the tensor gradient program (SGD) framework.<n>We show that SGD enables these networks to learn linearly independent features that substantially deviate from their initial values.<n>This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum.
arXiv Detail & Related papers (2025-03-12T17:33:13Z) - Activations Through Extensions: A Framework To Boost Performance Of Neural Networks [6.302159507265204]
Activation functions are non-linearities in neural networks that allow them to learn complex mapping between inputs and outputs.
We propose a framework that unifies several works on activation functions and theoretically explains the performance benefits of these works.
arXiv Detail & Related papers (2024-08-07T07:36:49Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
This manuscript explores how properties of functions learned by neural networks of depth greater than two layers affect predictions.<n>Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs.
arXiv Detail & Related papers (2023-05-24T22:10:12Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
We consider two classes of target functions: generalized bandlimited functions and Sobolev-Type balls.
Our results demonstrate that multiplicative neural networks can approximate these functions with significantly fewer layers and neurons.
These findings suggest that multiplicative gates can outperform standard feed-forward layers and have potential for improving neural network design.
arXiv Detail & Related papers (2023-01-11T17:57:33Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - A Use of Even Activation Functions in Neural Networks [0.35172332086962865]
We propose an alternative approach to integrate existing knowledge or hypotheses of data structure by constructing custom activation functions.
We show that using an even activation function in one of the fully connected layers improves neural network performance.
arXiv Detail & Related papers (2020-11-23T20:33:13Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Evolving Normalization-Activation Layers [100.82879448303805]
We develop efficient rejection protocols to quickly filter out candidate layers that do not work well.
Our method leads to the discovery of EvoNorms, a set of new normalization-activation layers with novel, and sometimes surprising structures.
Our experiments show that EvoNorms work well on image classification models including ResNets, MobileNets and EfficientNets.
arXiv Detail & Related papers (2020-04-06T19:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.