DMQ: Dissecting Outliers of Diffusion Models for Post-Training Quantization
- URL: http://arxiv.org/abs/2507.12933v1
- Date: Thu, 17 Jul 2025 09:15:29 GMT
- Title: DMQ: Dissecting Outliers of Diffusion Models for Post-Training Quantization
- Authors: Dongyeun Lee, Jiwan Hur, Hyounguk Shon, Jae Young Lee, Junmo Kim,
- Abstract summary: Recent post-training quantization methods overlook outliers, leading to degraded performance at low bit-widths.<n>We propose a DMQ which combines Learned Equivalent Scaling and channel-wise Power-of-Two Scaling.<n>Our method significantly outperforms existing works, especially at low bit-widths.
- Score: 29.066284789131494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have achieved remarkable success in image generation but come with significant computational costs, posing challenges for deployment in resource-constrained environments. Recent post-training quantization (PTQ) methods have attempted to mitigate this issue by focusing on the iterative nature of diffusion models. However, these approaches often overlook outliers, leading to degraded performance at low bit-widths. In this paper, we propose a DMQ which combines Learned Equivalent Scaling (LES) and channel-wise Power-of-Two Scaling (PTS) to effectively address these challenges. Learned Equivalent Scaling optimizes channel-wise scaling factors to redistribute quantization difficulty between weights and activations, reducing overall quantization error. Recognizing that early denoising steps, despite having small quantization errors, crucially impact the final output due to error accumulation, we incorporate an adaptive timestep weighting scheme to prioritize these critical steps during learning. Furthermore, identifying that layers such as skip connections exhibit high inter-channel variance, we introduce channel-wise Power-of-Two Scaling for activations. To ensure robust selection of PTS factors even with small calibration set, we introduce a voting algorithm that enhances reliability. Extensive experiments demonstrate that our method significantly outperforms existing works, especially at low bit-widths such as W4A6 (4-bit weight, 6-bit activation) and W4A8, maintaining high image generation quality and model stability. The code is available at https://github.com/LeeDongYeun/dmq.
Related papers
- LRQ-DiT: Log-Rotation Post-Training Quantization of Diffusion Transformers for Text-to-Image Generation [34.14174796390669]
Post-training quantization (PTQ) is a promising solution to reduce memory usage and accelerate inference.<n>Existing PTQ methods suffer from severe performance degradation under extreme low-bit settings.<n>We propose LRQ-DiT, an efficient and accurate PTQ framework.
arXiv Detail & Related papers (2025-08-05T14:16:11Z) - TCAQ-DM: Timestep-Channel Adaptive Quantization for Diffusion Models [49.65286242048452]
We propose a novel method dubbed Timestep-Channel Adaptive Quantization for Diffusion Models (TCAQ-DM)<n>The proposed method substantially outperforms the state-of-the-art approaches in most cases.
arXiv Detail & Related papers (2024-12-21T16:57:54Z) - MPQ-DM: Mixed Precision Quantization for Extremely Low Bit Diffusion Models [37.061975191553]
This paper presents MPQ-DM, a Mixed-Precision Quantization method for Diffusion Models.<n>To mitigate the quantization error caused by outlier severe weight channels, we propose an Outlier-Driven Mixed Quantization technique.<n>To robustly learn representations crossing time steps, we construct a Time-Smoothed Relation Distillation scheme.
arXiv Detail & Related papers (2024-12-16T08:31:55Z) - Efficiency Meets Fidelity: A Novel Quantization Framework for Stable Diffusion [9.402892455344677]
We propose an efficient quantization framework for Stable Diffusion models (SDM)<n>Our framework simultaneously maintains training-inference consistency and ensures optimization stability.<n>Our method demonstrates superior performance over state-of-the-art approaches with shorter training times.
arXiv Detail & Related papers (2024-12-09T17:00:20Z) - PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution [95.98801201266099]
Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps.<n>We propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR.<n>Our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR.
arXiv Detail & Related papers (2024-11-26T04:49:42Z) - Mitigating the Impact of Outlier Channels for Language Model Quantization with Activation Regularization [62.15918574997175]
It is known that language models contain outlier channels whose values on average are orders of magnitude higher than other channels.
We propose a strategy which regularizes a layer's inputs via quantization-aware training (QAT) and its outputs via activation kurtosis regularization.
We show that regularizing both the inputs and outputs is crucial for preventing a model's "migrating" the difficulty in input quantization to the weights.
arXiv Detail & Related papers (2024-04-04T17:25:30Z) - QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning [52.157939524815866]
In this paper, we identify imbalanced activation distributions as a primary source of quantization difficulty.<n>We propose to adjust these distributions through weight finetuning to be more quantization-friendly.<n>Our method demonstrates its efficacy across three high-resolution image generation tasks.
arXiv Detail & Related papers (2024-02-06T03:39:44Z) - QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models [44.515165695546614]
Quantization-Aware Training (QAT) offers a solution, but its extensive training costs make Post-Training Quantization (PTQ) a more practical approach for Large Language Models (LLMs)
We propose QLLM, an accurate and efficient low-bitwidth PTQ method designed for LLMs.
arXiv Detail & Related papers (2023-10-12T05:25:49Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
Quantizing deep convolutional neural networks for image super-resolution substantially reduces their computational costs.
Existing works either suffer from a severe performance drop in ultra-low precision of 4 or lower bit-widths, or require a heavy fine-tuning process to recover the performance.
We propose a novel distribution-aware quantization scheme (DAQ) which facilitates accurate training-free quantization in ultra-low precision.
arXiv Detail & Related papers (2020-12-21T10:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.