LoViC: Efficient Long Video Generation with Context Compression
- URL: http://arxiv.org/abs/2507.12952v1
- Date: Thu, 17 Jul 2025 09:46:43 GMT
- Title: LoViC: Efficient Long Video Generation with Context Compression
- Authors: Jiaxiu Jiang, Wenbo Li, Jingjing Ren, Yuping Qiu, Yong Guo, Xiaogang Xu, Han Wu, Wangmeng Zuo,
- Abstract summary: We introduce LoViC, a DiT-based framework trained on million-scale open-domain videos.<n>At the core of our approach is FlexFormer, an expressive autoencoder that jointly compresses video and text into unified latent representations.
- Score: 68.22069741704158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances in diffusion transformers (DiTs) for text-to-video generation, scaling to long-duration content remains challenging due to the quadratic complexity of self-attention. While prior efforts -- such as sparse attention and temporally autoregressive models -- offer partial relief, they often compromise temporal coherence or scalability. We introduce LoViC, a DiT-based framework trained on million-scale open-domain videos, designed to produce long, coherent videos through a segment-wise generation process. At the core of our approach is FlexFormer, an expressive autoencoder that jointly compresses video and text into unified latent representations. It supports variable-length inputs with linearly adjustable compression rates, enabled by a single query token design based on the Q-Former architecture. Additionally, by encoding temporal context through position-aware mechanisms, our model seamlessly supports prediction, retradiction, interpolation, and multi-shot generation within a unified paradigm. Extensive experiments across diverse tasks validate the effectiveness and versatility of our approach.
Related papers
- Temporal In-Context Fine-Tuning for Versatile Control of Video Diffusion Models [34.131515004434846]
We introduce Temporal In-Context Fine-Tuning (TIC-FT), an efficient approach for adapting pretrained video diffusion models to conditional generation tasks.<n>TIC-FT requires no architectural changes and achieves strong performance with as few as 10-30 training samples.<n>We validate our method across a range of tasks, including image-to-video and video-to-video generation, using large-scale base models such as CogVideoX-5B and Wan-14B.
arXiv Detail & Related papers (2025-06-01T12:57:43Z) - InfLVG: Reinforce Inference-Time Consistent Long Video Generation with GRPO [73.33751812982342]
InfLVG is an inference-time framework that enables coherent long video generation without requiring additional long-form video data.<n>We show that InfLVG can extend video length by up to 9$times$, achieving strong consistency and semantic fidelity across scenes.
arXiv Detail & Related papers (2025-05-23T07:33:25Z) - Fast Autoregressive Video Generation with Diagonal Decoding [34.90521536645348]
Diagonal Decoding (DiagD) is a training-free inference acceleration algorithm for autoregressively pre-trained models.<n>Our method generates tokens along diagonal paths in the spatial-temporal token grid, enabling parallel decoding within each frame.<n>DiagD achieves up to $10times$ speedup compared to naive sequential decoding, while maintaining comparable visual fidelity.
arXiv Detail & Related papers (2025-03-18T09:42:55Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - Espresso: High Compression For Rich Extraction From Videos for Your Vision-Language Model [15.320117192047265]
We introduce $textttEspresso$, a new architecture that separately compresses spatial and temporal features into fixed-length sequences.<n>Experiments show that fixed-length compression combined with segment-wise processing offers a scalable and competitive alternative to pooling-based approaches.
arXiv Detail & Related papers (2024-12-06T02:39:50Z) - Efficient Long-duration Talking Video Synthesis with Linear Diffusion Transformer under Multimodal Guidance [19.590464986176617]
LetsTalk is a diffusion diffusion TranSformer for Talking video synthesis.<n>Our approach achieves state-of-the-art generation quality, producing temporally coherent and realistic videos.
arXiv Detail & Related papers (2024-11-24T04:46:00Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
In the framework of learned image compression, the context model plays a pivotal role in capturing the dependencies among latent representations.
We propose the textbfCorner-to-Center transformer-based Context Model (C$3$M) designed to enhance context and latent predictions.
In addition, to enlarge the receptive field in the analysis and synthesis transformation, we use the Long-range Crossing Attention Module (LCAM) in the encoder/decoder.
arXiv Detail & Related papers (2023-11-29T21:40:28Z) - Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation [55.36617538438858]
We propose a novel approach that strengthens the interaction between spatial and temporal perceptions.
We curate a large-scale and open-source video dataset called HD-VG-130M.
arXiv Detail & Related papers (2023-05-18T11:06:15Z) - SViTT: Temporal Learning of Sparse Video-Text Transformers [65.93031164906812]
We propose SViTT, a sparse video-text architecture that performs multi-frame reasoning with significantly lower cost than naive transformers with dense attention.
SViTT employs two forms of sparsity: edge sparsity that limits the query-key communications between tokens in self-attention, and sparsity that discards uninformative visual tokens.
arXiv Detail & Related papers (2023-04-18T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.