Resurrect Mask AutoRegressive Modeling for Efficient and Scalable Image Generation
- URL: http://arxiv.org/abs/2507.13032v1
- Date: Thu, 17 Jul 2025 12:02:38 GMT
- Title: Resurrect Mask AutoRegressive Modeling for Efficient and Scalable Image Generation
- Authors: Yi Xin, Le Zhuo, Qi Qin, Siqi Luo, Yuewen Cao, Bin Fu, Yangfan He, Hongsheng Li, Guangtao Zhai, Xiaohong Liu, Peng Gao,
- Abstract summary: Masked AutoRegressive (MAR) models have made notable progress in image generation.<n>MAR models have traditionally underperformed when compared to standard AR models.<n>This study refines the MAR architecture to improve image generation quality.
- Score: 62.00800210379539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AutoRegressive (AR) models have made notable progress in image generation, with Masked AutoRegressive (MAR) models gaining attention for their efficient parallel decoding. However, MAR models have traditionally underperformed when compared to standard AR models. This study refines the MAR architecture to improve image generation quality. We begin by evaluating various image tokenizers to identify the most effective one. Subsequently, we introduce an improved Bidirectional LLaMA architecture by replacing causal attention with bidirectional attention and incorporating 2D RoPE, which together form our advanced model, MaskGIL. Scaled from 111M to 1.4B parameters, MaskGIL achieves a FID score of 3.71, matching state-of-the-art AR models in the ImageNet 256x256 benchmark, while requiring only 8 inference steps compared to the 256 steps of AR models. Furthermore, we develop a text-driven MaskGIL model with 775M parameters for generating images from text at various resolutions. Beyond image generation, MaskGIL extends to accelerate AR-based generation and enable real-time speech-to-image conversion. Our codes and models are available at https://github.com/synbol/MaskGIL.
Related papers
- HMAR: Efficient Hierarchical Masked Auto-Regressive Image Generation [91.08481618973111]
Visual Auto-Regressive modeling ( VAR) has shown promise in bridging the speed and quality gap between autoregressive image models and diffusion models.<n>We introduce Hierarchical Masked Auto-Regressive modeling (HMAR) to generate high-quality images with fast sampling.<n>HMAR reformulates next-scale prediction as a Markovian process, wherein the prediction of each resolution scale is conditioned only on tokens in its immediate predecessor.
arXiv Detail & Related papers (2025-06-04T20:08:07Z) - Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models [92.18057318458528]
Token-Shuffle is a novel method that reduces the number of image tokens in Transformer.<n>Our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis.<n>In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15.
arXiv Detail & Related papers (2025-04-24T17:59:56Z) - MaskBit: Embedding-free Image Generation via Bit Tokens [54.827480008982185]
We present an empirical and systematic examination of VQGANs, leading to a modernized VQGAN.<n>Second contribution demonstrates that embedding-free image generation using bit tokens achieves a new state-of-the-art FID of 1.52 on the ImageNet 256x256 benchmark.
arXiv Detail & Related papers (2024-09-24T16:12:12Z) - Scalable Autoregressive Image Generation with Mamba [23.027439743155192]
We introduce AiM, an autoregressive (AR) image generative model based on Mamba architecture.<n>Mamba is a novel state-space model characterized by its exceptional performance for long-sequence modeling with linear time.<n>We provide AiM models in various scales, with parameter counts ranging from 148M to 1.3B.
arXiv Detail & Related papers (2024-08-22T09:27:49Z) - Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation [52.509092010267665]
We introduce LlamaGen, a new family of image generation models that apply original next-token prediction'' paradigm of large language models to visual generation domain.
It is an affirmative answer to whether vanilla autoregressive models, e.g., Llama, without inductive biases on visual signals can achieve state-of-the-art image generation performance if scaling properly.
arXiv Detail & Related papers (2024-06-10T17:59:52Z) - Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction [33.57820997288788]
We present a new generation paradigm that redefines the autoregressive learning on images as coarse-to-fine "next-scale prediction"
Visual AutoRegressive modeling makes GPT-like AR models surpass diffusion transformers in image generation.
We have released all models and codes to promote the exploration of AR/token models for visual generation and unified learning.
arXiv Detail & Related papers (2024-04-03T17:59:53Z) - Emage: Non-Autoregressive Text-to-Image Generation [63.347052548210236]
Non-autoregressive text-to-image models efficiently generate hundreds of image tokens in parallel.
Our model with 346M parameters generates an image of 256$times$256 with about one second on one V100 GPU.
arXiv Detail & Related papers (2023-12-22T10:01:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.