Channel-wise Motion Features for Efficient Motion Segmentation
- URL: http://arxiv.org/abs/2507.13082v1
- Date: Thu, 17 Jul 2025 12:53:38 GMT
- Title: Channel-wise Motion Features for Efficient Motion Segmentation
- Authors: Riku Inoue, Masamitsu Tsuchiya, Yuji Yasui,
- Abstract summary: We propose a novel cost-volume-based motion feature representation, Channel-wise Motion Features.<n>Our method achieves about 4 times the FPS of state-of-the-art models in the KITTI dataset and Cityscapes of the VCAS-Motion dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For safety-critical robotics applications such as autonomous driving, it is important to detect all required objects accurately in real-time. Motion segmentation offers a solution by identifying dynamic objects from the scene in a class-agnostic manner. Recently, various motion segmentation models have been proposed, most of which jointly use subnetworks to estimate Depth, Pose, Optical Flow, and Scene Flow. As a result, the overall computational cost of the model increases, hindering real-time performance. In this paper, we propose a novel cost-volume-based motion feature representation, Channel-wise Motion Features. By extracting depth features of each instance in the feature map and capturing the scene's 3D motion information, it offers enhanced efficiency. The only subnetwork used to build Channel-wise Motion Features is the Pose Network, and no others are required. Our method not only achieves about 4 times the FPS of state-of-the-art models in the KITTI Dataset and Cityscapes of the VCAS-Motion Dataset, but also demonstrates equivalent accuracy while reducing the parameters to about 25$\%$.
Related papers
- Segment Any Motion in Videos [80.72424676419755]
We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features.<n>Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support.
arXiv Detail & Related papers (2025-03-28T09:34:11Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.<n>By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.<n>We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Motion Segmentation for Neuromorphic Aerial Surveillance [42.04157319642197]
Event cameras offer superior temporal resolution, superior dynamic range, and minimal power requirements.
Unlike traditional frame-based sensors that capture redundant information at fixed intervals, event cameras asynchronously record pixel-level brightness changes.
We introduce a novel motion segmentation method that leverages self-supervised vision transformers on both event data and optical flow information.
arXiv Detail & Related papers (2024-05-24T04:36:13Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Efficient Unsupervised Video Object Segmentation Network Based on Motion
Guidance [1.5736899098702974]
This paper proposes a video object segmentation network based on motion guidance.
The model comprises a dual-stream network, motion guidance module, and multi-scale progressive fusion module.
The experimental results prove the superior performance of the proposed method.
arXiv Detail & Related papers (2022-11-10T06:13:23Z) - Treating Motion as Option to Reduce Motion Dependency in Unsupervised
Video Object Segmentation [5.231219025536678]
Unsupervised video object segmentation (VOS) aims to detect the most salient object in a video sequence at the pixel level.
Most state-of-the-art methods leverage motion cues obtained from optical flow maps in addition to appearance cues to exploit the property that salient objects usually have distinctive movements compared to the background.
arXiv Detail & Related papers (2022-09-04T18:05:52Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
We propose a unified action recognition framework to investigate the dynamic nature of video content.
First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events.
Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer.
arXiv Detail & Related papers (2021-07-22T15:57:18Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
We propose a modular network, motivated by a geometric analysis of what independent object motions can be recovered from an egomotion field.
It takes two consecutive frames as input and predicts segmentation masks for the background and multiple rigidly moving objects, which are then parameterized by 3D rigid transformations.
Our method achieves state-of-the-art performance for rigid motion segmentation on KITTI and Sintel.
arXiv Detail & Related papers (2021-01-11T04:20:30Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
We present a Motion-Attentive Transition Network (MATNet) for zero-shot object segmentation.
An asymmetric attention block, called Motion-Attentive Transition (MAT), is designed within a two-stream encoder.
In this way, the encoder becomes deeply internative, allowing for closely hierarchical interactions between object motion and appearance.
arXiv Detail & Related papers (2020-03-09T16:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.