Deep Learning-Based Fetal Lung Segmentation from Diffusion-weighted MRI Images and Lung Maturity Evaluation for Fetal Growth Restriction
- URL: http://arxiv.org/abs/2507.13106v1
- Date: Thu, 17 Jul 2025 13:21:42 GMT
- Title: Deep Learning-Based Fetal Lung Segmentation from Diffusion-weighted MRI Images and Lung Maturity Evaluation for Fetal Growth Restriction
- Authors: Zhennan Xiao, Katharine Brudkiewicz, Zhen Yuan, Rosalind Aughwane, Magdalena Sokolska, Joanna Chappell, Trevor Gaunt, Anna L. David, Andrew P. King, Andrew Melbourne,
- Abstract summary: Intra-voxel incoherent motion analysis has shown promising results for non-invasive assessment of fetal lung development.<n>Our work shows that a fully automated pipeline is possible for supporting fetal lung maturity assessment and clinical decision-making.
- Score: 3.0052797079637075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fetal lung maturity is a critical indicator for predicting neonatal outcomes and the need for post-natal intervention, especially for pregnancies affected by fetal growth restriction. Intra-voxel incoherent motion analysis has shown promising results for non-invasive assessment of fetal lung development, but its reliance on manual segmentation is time-consuming, thus limiting its clinical applicability. In this work, we present an automated lung maturity evaluation pipeline for diffusion-weighted magnetic resonance images that consists of a deep learning-based fetal lung segmentation model and a model-fitting lung maturity assessment. A 3D nnU-Net model was trained on manually segmented images selected from the baseline frames of 4D diffusion-weighted MRI scans. The segmentation model demonstrated robust performance, yielding a mean Dice coefficient of 82.14%. Next, voxel-wise model fitting was performed based on both the nnU-Net-predicted and manual lung segmentations to quantify IVIM parameters reflecting tissue microstructure and perfusion. The results suggested no differences between the two. Our work shows that a fully automated pipeline is possible for supporting fetal lung maturity assessment and clinical decision-making.
Related papers
- IVIM-Morph: Motion-compensated quantitative Intra-voxel Incoherent Motion (IVIM) analysis for functional fetal lung maturity assessment from diffusion-weighted MRI data [6.751130449661]
We present IVIM-morph, a self-supervised deep neural network model for motion-corrected quantitative analysis of DWI data.<n>IVIM-morph combines two sub-networks, a registration sub-network, and an IVIM model fitting sub-network, enabling simultaneous estimation of IVIM model parameters and motion.
arXiv Detail & Related papers (2024-01-13T18:01:44Z) - MESAHA-Net: Multi-Encoders based Self-Adaptive Hard Attention Network
with Maximum Intensity Projections for Lung Nodule Segmentation in CT Scan [6.266053305874546]
We propose an efficient end-to-end framework, the multi-encoder-based self-adaptive hard attention network (MESAHA-Net) for precise lung nodule segmentation in CT scans.
MESAHA-Net iteratively performs slice-by-slice 2D segmentation of lung nodules, focusing on the nodule region in each slice to generate 3D segmentation of lung nodules.
The proposed framework has been evaluated on the LIDC-IDRI dataset, the largest publicly available dataset for lung nodule segmentation.
arXiv Detail & Related papers (2023-04-04T07:05:15Z) - Generalizability of Deep Adult Lung Segmentation Models to the Pediatric
Population: A Retrospective Study [3.083972552471178]
Lung segmentation in chest X-rays (CXRs) is an important prerequisite for improving the specificity of diagnoses of cardiopulmonary diseases.
Current deep learning models for lung segmentation are trained and evaluated on CXR datasets in which the radiographic projections are captured predominantly from the adult population.
The shape of the lungs is reported to be significantly different across the developmental stages from infancy to adulthood.
arXiv Detail & Related papers (2022-11-04T14:06:51Z) - What Makes for Automatic Reconstruction of Pulmonary Segments [50.216231776343115]
3D reconstruction of pulmonary segments plays an important role in surgical treatment planning of lung cancer.
However, automatic reconstruction of pulmonary segments remains unexplored in the era of deep learning.
We propose ImPulSe, a deep implicit surface model designed for pulmonary segment reconstruction.
arXiv Detail & Related papers (2022-07-07T04:24:17Z) - An automatic pipeline for atlas-based fetal and neonatal brain
segmentation and analysis [1.3198175418055964]
We report the creation of two new fetal atlases, and their use within the pipeline for atlas-based segmentation.
The pipeline is also able to extract cortical and pial surfaces and compute features, such as curvature, thickness, sulcal depth, and local gyrification index.
arXiv Detail & Related papers (2022-05-16T11:15:26Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Deep Residual 3D U-Net for Joint Segmentation and Texture Classification
of Nodules in Lung [91.3755431537592]
We present a method for lung nodules segmentation, their texture classification and subsequent follow-up recommendation from the CT image of lung.
Our method consists of neural network model based on popular U-Net architecture family but modified for the joint nodule segmentation and its texture classification tasks and an ensemble-based model for the follow-up recommendation.
arXiv Detail & Related papers (2020-06-25T07:20:41Z) - U-Det: A Modified U-Net architecture with bidirectional feature network
for lung nodule segmentation [0.0]
This article proposes U-Det, a resource-efficient model architecture, which is an end to end deep learning approach to solve the task at hand.
The proposed model is extensively trained and evaluated on the publicly available LUNA-16 dataset consisting of 1186 lung nodules.
The U-Det architecture outperforms the existing U-Net model with the Dice similarity coefficient (DSC) of 82.82% and achieves results comparable to human experts.
arXiv Detail & Related papers (2020-03-20T14:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.