Revisiting Reliability in the Reasoning-based Pose Estimation Benchmark
- URL: http://arxiv.org/abs/2507.13314v1
- Date: Thu, 17 Jul 2025 17:33:11 GMT
- Title: Revisiting Reliability in the Reasoning-based Pose Estimation Benchmark
- Authors: Junsu Kim, Naeun Kim, Jaeho Lee, Incheol Park, Dongyoon Han, Seungryul Baek,
- Abstract summary: The reasoning-based pose estimation (RPE) benchmark has emerged as a widely adopted evaluation standard for pose-aware large language models (MLLMs)<n>We identified critical and benchmark-quality issues that hinder fair and consistent quantitative evaluations.
- Score: 27.134554623769898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reasoning-based pose estimation (RPE) benchmark has emerged as a widely adopted evaluation standard for pose-aware multimodal large language models (MLLMs). Despite its significance, we identified critical reproducibility and benchmark-quality issues that hinder fair and consistent quantitative evaluations. Most notably, the benchmark utilizes different image indices from those of the original 3DPW dataset, forcing researchers into tedious and error-prone manual matching processes to obtain accurate ground-truth (GT) annotations for quantitative metrics (\eg, MPJPE, PA-MPJPE). Furthermore, our analysis reveals several inherent benchmark-quality limitations, including significant image redundancy, scenario imbalance, overly simplistic poses, and ambiguous textual descriptions, collectively undermining reliable evaluations across diverse scenarios. To alleviate manual effort and enhance reproducibility, we carefully refined the GT annotations through meticulous visual matching and publicly release these refined annotations as an open-source resource, thereby promoting consistent quantitative evaluations and facilitating future advancements in human pose-aware multimodal reasoning.
Related papers
- Evaluating Variance in Visual Question Answering Benchmarks [0.9065034043031668]
Multimodal large language models (MLLMs) have emerged as powerful tools for visual question answering (VQA)<n>Despite their advancements, the evaluation of MLLMs on VQA benchmarks often relies on point estimates.<n>This paper critically examines these issues by analyzing across 14 widely used VQA benchmarks.
arXiv Detail & Related papers (2025-08-04T17:37:13Z) - T2I-Eval-R1: Reinforcement Learning-Driven Reasoning for Interpretable Text-to-Image Evaluation [60.620408007636016]
We propose T2I-Eval-R1, a novel reinforcement learning framework that trains open-source MLLMs using only coarse-grained quality scores.<n>Our approach integrates Group Relative Policy Optimization into the instruction-tuning process, enabling models to generate both scalar scores and interpretable reasoning chains.
arXiv Detail & Related papers (2025-05-23T13:44:59Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - Aspect-Guided Multi-Level Perturbation Analysis of Large Language Models in Automated Peer Review [36.05498398665352]
We propose an aspect-guided, multi-level perturbation framework to evaluate the robustness of Large Language Models (LLMs) in automated peer review.<n>Our framework explores perturbations in three key components of the peer review process-papers, reviews, and rebuttals-across several quality aspects.
arXiv Detail & Related papers (2025-02-18T03:50:06Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
Large language models (LLMs) have demonstrated significant utilities in real-world applications.<n> Benchmark evaluations are crucial for assessing the capabilities of LLMs.
arXiv Detail & Related papers (2025-02-13T03:43:33Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)<n>MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.<n>It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - Detecting Multimodal Situations with Insufficient Context and Abstaining from Baseless Predictions [75.45274978665684]
Vision-Language Understanding (VLU) benchmarks contain samples where answers rely on assumptions unsupported by the provided context.<n>We collect contextual data for each sample whenever available and train a context selection module to facilitate evidence-based model predictions.<n>We develop a general-purpose Context-AwaRe Abstention detector to identify samples lacking sufficient context and enhance model accuracy.
arXiv Detail & Related papers (2024-05-18T02:21:32Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and
Improvement of Large Language Models [4.953092503184905]
This work proposes DCR, an automated framework for evaluating and improving the consistency of Large Language Models (LLMs) generated texts.
We introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score.
Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.
arXiv Detail & Related papers (2024-01-04T08:34:16Z) - Goodhart's Law Applies to NLP's Explanation Benchmarks [57.26445915212884]
We critically examine two sets of metrics: the ERASER metrics (comprehensiveness and sufficiency) and the EVAL-X metrics.
We show that we can inflate a model's comprehensiveness and sufficiency scores dramatically without altering its predictions or explanations on in-distribution test inputs.
Our results raise doubts about the ability of current metrics to guide explainability research, underscoring the need for a broader reassessment of what precisely these metrics are intended to capture.
arXiv Detail & Related papers (2023-08-28T03:03:03Z) - Evaluating and Improving Factuality in Multimodal Abstractive
Summarization [91.46015013816083]
We propose CLIPBERTScore to leverage the robustness and strong factuality detection performance between image-summary and document-summary.
We show that this simple combination of two metrics in the zero-shot achieves higher correlations than existing factuality metrics for document summarization.
Our analysis demonstrates the robustness and high correlation of CLIPBERTScore and its components on four factuality metric-evaluation benchmarks.
arXiv Detail & Related papers (2022-11-04T16:50:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.