Butter: Frequency Consistency and Hierarchical Fusion for Autonomous Driving Object Detection
- URL: http://arxiv.org/abs/2507.13373v2
- Date: Thu, 31 Jul 2025 10:00:51 GMT
- Title: Butter: Frequency Consistency and Hierarchical Fusion for Autonomous Driving Object Detection
- Authors: Xiaojian Lin, Wenxin Zhang, Yuchu Jiang, Wangyu Wu, Yiran Guo, Kangxu Wang, Zongzheng Zhang, Guijin Wang, Lei Jin, Hao Zhao,
- Abstract summary: Hierarchical feature representations play a pivotal role in computer vision, particularly in object detection for autonomous driving.<n>Existing architectures, such as YOLO and DETR, struggle to maintain feature consistency across different scales.<n>We propose Butter, a novel object detection framework designed to enhance hierarchical feature representations for improving detection robustness.
- Score: 8.358814839784332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hierarchical feature representations play a pivotal role in computer vision, particularly in object detection for autonomous driving. Multi-level semantic understanding is crucial for accurately identifying pedestrians, vehicles, and traffic signs in dynamic environments. However, existing architectures, such as YOLO and DETR, struggle to maintain feature consistency across different scales while balancing detection precision and computational efficiency. To address these challenges, we propose Butter, a novel object detection framework designed to enhance hierarchical feature representations for improving detection robustness. Specifically, Butter introduces two key innovations: Frequency-Adaptive Feature Consistency Enhancement (FAFCE) Component, which refines multi-scale feature consistency by leveraging adaptive frequency filtering to enhance structural and boundary precision, and Progressive Hierarchical Feature Fusion Network (PHFFNet) Module, which progressively integrates multi-level features to mitigate semantic gaps and strengthen hierarchical feature learning. Through extensive experiments on BDD100K, KITTI, and Cityscapes, Butter demonstrates superior feature representation capabilities, leading to notable improvements in detection accuracy while reducing model complexity. By focusing on hierarchical feature refinement and integration, Butter provides an advanced approach to object detection that achieves a balance between accuracy, deployability, and computational efficiency in real-time autonomous driving scenarios. Our model and implementation are publicly available at https://github.com/Aveiro-Lin/Butter, facilitating further research and validation within the autonomous driving community.
Related papers
- SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVE is an innovative framework that synergizes Vision-Language Models with end-to-end (E2E) models to enhance autonomous vehicle planning.<n>Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components.
arXiv Detail & Related papers (2025-05-22T15:44:30Z) - DriveTransformer: Unified Transformer for Scalable End-to-End Autonomous Driving [62.62464518137153]
DriveTransformer is a simplified E2E-AD framework for the ease of scaling up.<n>It is composed of three unified operations: task self-attention, sensor cross-attention, temporal cross-attention.<n>It achieves state-of-the-art performance in both simulated closed-loop benchmark Bench2Drive and real world open-loop benchmark nuScenes with high FPS.
arXiv Detail & Related papers (2025-03-07T11:41:18Z) - Spatial-Temporal Perception with Causal Inference for Naturalistic Driving Action Recognition [6.115044825582411]
Naturalistic driving action recognition is essential for vehicle cabin monitoring systems.<n>Previous approaches have struggled with practical implementation due to their limited ability to observe subtle behavioral differences.<n>We propose a novel Spatial-Temporal Perception architecture that emphasizes both temporal information and spatial relationships.
arXiv Detail & Related papers (2025-03-06T04:28:11Z) - InVDriver: Intra-Instance Aware Vectorized Query-Based Autonomous Driving Transformer [12.441180142943328]
InVDriver is a novel vectorized query-based system for intra-instance spatial dependencies.<n>We show that InVDriver achieves state-of-the-art performance, surpassing prior methods in both accuracy and safety.
arXiv Detail & Related papers (2025-02-25T08:20:16Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.<n>Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.<n>We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems [1.3022753212679383]
This paper proposes a novel feature ensemble framework that integrates multiple Explainable AI (XAI) methods.
By fusing top features identified by these XAI methods across six diverse AI models, the framework creates a robust and comprehensive set of features critical for detecting anomalies.
Our technique demonstrates improved accuracy, robustness, and transparency of AI models, contributing to safer and more trustworthy autonomous driving systems.
arXiv Detail & Related papers (2024-10-20T14:34:48Z) - GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
We propose a Generalized Structural Sparse to capture powerful relationships across modalities for pair-wise similarity learning.
The distance metric delicately encapsulates two formats of diagonal and block-diagonal terms.
Experiments on cross-modal and two extra uni-modal retrieval tasks have validated its superiority and flexibility.
arXiv Detail & Related papers (2024-10-20T03:45:50Z) - DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
We introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout.<n>DeepInteraction++ is a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder.<n>Experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks.
arXiv Detail & Related papers (2024-08-09T14:04:21Z) - RADA: Robust and Accurate Feature Learning with Domain Adaptation [7.905594146253435]
We introduce a multi-level feature aggregation network that incorporates two pivotal components to facilitate the learning of robust and accurate features.<n>Our method, RADA, achieves excellent results in image matching, camera pose estimation, and visual localization tasks.
arXiv Detail & Related papers (2024-07-22T16:49:58Z) - DuEqNet: Dual-Equivariance Network in Outdoor 3D Object Detection for
Autonomous Driving [4.489333751818157]
We propose DuEqNet, which first introduces the concept of equivariance into 3D object detection network.
The dual-equivariant of our model can extract the equivariant features at both local and global levels.
Our model presents higher accuracy on orientation and better prediction efficiency.
arXiv Detail & Related papers (2023-02-27T08:30:02Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.