Loss-Complexity Landscape and Model Structure Functions
- URL: http://arxiv.org/abs/2507.13543v1
- Date: Thu, 17 Jul 2025 21:31:45 GMT
- Title: Loss-Complexity Landscape and Model Structure Functions
- Authors: Alexander Kolpakov,
- Abstract summary: We develop a framework for dualizing the Kolmogorov structure function $h_x(alpha)$.<n>We establish a mathematical analogy between information-theoretic constructs and statistical mechanics.<n>We explicitly prove the Legendre-Fenchel duality between the structure function and free energy.
- Score: 56.01537787608726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a framework for dualizing the Kolmogorov structure function $h_x(\alpha)$, which then allows using computable complexity proxies. We establish a mathematical analogy between information-theoretic constructs and statistical mechanics, introducing a suitable partition function and free energy functional. We explicitly prove the Legendre-Fenchel duality between the structure function and free energy, showing detailed balance of the Metropolis kernel, and interpret acceptance probabilities as information-theoretic scattering amplitudes. A susceptibility-like variance of model complexity is shown to peak precisely at loss-complexity trade-offs interpreted as phase transitions. Practical experiments with linear and tree-based regression models verify these theoretical predictions, explicitly demonstrating the interplay between the model complexity, generalization, and overfitting threshold.
Related papers
- Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
We propose a quantum Discrete Denoising Diffusion Probabilistic Model (QD3PM)<n>It enables joint probability learning through diffusion and denoising in exponentially large Hilbert spaces.<n>This paper establishes a new theoretical paradigm in generative models by leveraging the quantum advantage in joint distribution learning.
arXiv Detail & Related papers (2025-05-08T11:48:21Z) - Generalized Derangetropy Functionals for Modeling Cyclical Information Flow [11.095723123836965]
This paper introduces a framework for modeling cyclical and feedback-driven information flow through a generalized family of entropy-modulated transformations called derangetropy functionals.<n>Unlike scalar and static entropy measures such as Shannon entropy, these functionals act directly on probability densities and provide a topographical representation of information structure across the support of the distribution.
arXiv Detail & Related papers (2025-04-20T13:09:21Z) - Structure Learning and Parameter Estimation for Graphical Models via
Penalized Maximum Likelihood Methods [0.0]
In the thesis, we consider two different types of PGMs: Bayesian networks (BNs) which are static, and continuous time Bayesian networks which, as the name suggests, have a temporal component.
We are interested in recovering their true structure, which is the first step in learning any PGM.
arXiv Detail & Related papers (2023-01-30T20:26:13Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Factorized Fusion Shrinkage for Dynamic Relational Data [16.531262817315696]
We consider a factorized fusion shrinkage model in which all decomposed factors are dynamically shrunk towards group-wise fusion structures.
The proposed priors enjoy many favorable properties in comparison and clustering of the estimated dynamic latent factors.
We present a structured mean-field variational inference framework that balances optimal posterior inference with computational scalability.
arXiv Detail & Related papers (2022-09-30T21:03:40Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Stochastic spectral embedding [0.0]
We propose a novel sequential adaptive surrogate modeling method based on "stochastic spectral embedding" (SSE)
We show how the method compares favorably against state-of-the-art sparse chaos expansions on a set of models with different complexity and input dimension.
arXiv Detail & Related papers (2020-04-09T11:00:07Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.