LLaPipe: LLM-Guided Reinforcement Learning for Automated Data Preparation Pipeline Construction
- URL: http://arxiv.org/abs/2507.13712v1
- Date: Fri, 18 Jul 2025 07:52:19 GMT
- Title: LLaPipe: LLM-Guided Reinforcement Learning for Automated Data Preparation Pipeline Construction
- Authors: Jing Chang, Chang Liu, Jinbin Huang, Rui Mao, Jianbin Qin,
- Abstract summary: We present LLaPipe, a novel framework that integrates Large Language Models (LLMs) as intelligent policy advisors.<n>We demonstrate that LLaPipe achieves up to 22.4% improvement in pipeline quality and 2.3$times$ faster convergence compared to state-of-the-art RL-based methods.
- Score: 10.777588304625718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated data preparation is crucial for democratizing machine learning, yet existing reinforcement learning (RL) based approaches suffer from inefficient exploration in the vast space of possible preprocessing pipelines. We present LLaPipe, a novel framework that addresses this exploration bottleneck by integrating Large Language Models (LLMs) as intelligent policy advisors. Unlike traditional methods that rely solely on statistical features and blind trial-and-error, LLaPipe leverages the semantic understanding capabilities of LLMs to provide contextually relevant exploration guidance. Our framework introduces three key innovations: (1) an LLM Policy Advisor that analyzes dataset semantics and pipeline history to suggest promising preprocessing operations, (2) an Experience Distillation mechanism that mines successful patterns from past pipelines and transfers this knowledge to guide future exploration, and (3) an Adaptive Advisor Triggering strategy (Advisor\textsuperscript{+}) that dynamically determines when LLM intervention is most beneficial, balancing exploration effectiveness with computational cost. Through extensive experiments on 18 diverse datasets spanning multiple domains, we demonstrate that LLaPipe achieves up to 22.4\% improvement in pipeline quality and 2.3$\times$ faster convergence compared to state-of-the-art RL-based methods, while maintaining computational efficiency through selective LLM usage (averaging only 19.0\% of total exploration steps).
Related papers
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Toward Efficient Exploration by Large Language Model Agents [14.712532175418884]
Large language models (LLMs) can be used to explicitly implement an existing reinforcement learning algorithm.<n>We show how our LLM-based implementation of a known, data-efficient RL algorithm can be considerably more effective in natural language tasks.
arXiv Detail & Related papers (2025-04-29T17:59:48Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs [29.735465300269993]
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning.<n>This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP)<n>We evaluate our approach on two benchmark datasets: StepGame and SparQA.
arXiv Detail & Related papers (2024-11-27T18:04:05Z) - EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.<n>We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.<n>Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
We introduce a novel tool invocation pipeline designed to control massive real-world APIs.
This pipeline mirrors the human task-solving process, addressing complicated real-life user queries.
Empirical evaluations of our Sum2Act pipeline on the ToolBench benchmark show significant performance improvements.
arXiv Detail & Related papers (2024-02-28T08:42:23Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.