D2IP: Deep Dynamic Image Prior for 3D Time-sequence Pulmonary Impedance Imaging
- URL: http://arxiv.org/abs/2507.14046v1
- Date: Fri, 18 Jul 2025 16:14:09 GMT
- Title: D2IP: Deep Dynamic Image Prior for 3D Time-sequence Pulmonary Impedance Imaging
- Authors: Hao Fang, Hao Yu, Sihao Teng, Tao Zhang, Siyi Yuan, Huaiwu He, Zhe Liu, Yunjie Yang,
- Abstract summary: Deep Dynamic Image Prior (D2IP) is a novel framework for 3D time-sequence imaging.<n>Compared to state-of-the-art baselines, D2IP delivers superior image quality, with a 24.8% increase in average MSSIM and an 8.1% reduction in ERR.
- Score: 10.854639838765703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised learning methods, such as Deep Image Prior (DIP), have shown great potential in tomographic imaging due to their training-data-free nature and high generalization capability. However, their reliance on numerous network parameter iterations results in high computational costs, limiting their practical application, particularly in complex 3D or time-sequence tomographic imaging tasks. To overcome these challenges, we propose Deep Dynamic Image Prior (D2IP), a novel framework for 3D time-sequence imaging. D2IP introduces three key strategies - Unsupervised Parameter Warm-Start (UPWS), Temporal Parameter Propagation (TPP), and a customized lightweight reconstruction backbone, 3D-FastResUNet - to accelerate convergence, enforce temporal coherence, and improve computational efficiency. Experimental results on both simulated and clinical pulmonary datasets demonstrate that D2IP enables fast and accurate 3D time-sequence Electrical Impedance Tomography (tsEIT) reconstruction. Compared to state-of-the-art baselines, D2IP delivers superior image quality, with a 24.8% increase in average MSSIM and an 8.1% reduction in ERR, alongside significantly reduced computational time (7.1x faster), highlighting its promise for clinical dynamic pulmonary imaging.
Related papers
- MoNetV2: Enhanced Motion Network for Freehand 3D Ultrasound Reconstruction [11.531888235029445]
We propose an enhanced motion network (MoNetV2) to enhance the accuracy and generalizability of reconstruction under diverse scanning velocities and tactics.<n>MoNetV2 surpasses existing methods in both reconstruction quality and generalizability performance across three large datasets.
arXiv Detail & Related papers (2025-06-16T04:57:34Z) - 3D Photon Counting CT Image Super-Resolution Using Conditional Diffusion Model [6.75361442343724]
This study aims to improve photon counting CT (PCCT) image resolution using denoising diffusion probabilistic models (DDPM)
We first leverage CatSim to simulate realistic lower resolution PCCT images from high-resolution CT scans.
Since maximizing DDPM performance is time-consuming for both inference and training, we explore both 2D and 3D networks for conditional DDPM.
arXiv Detail & Related papers (2024-08-22T02:25:21Z) - StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations [3.4453266252081645]
We introduce StoDIP, a new algorithm that extends the ground-truth-free Deep Image Prior (DIP) reconstruction to 3D MRF imaging.
tested on a dataset of whole-brain scans from healthy volunteers, StoDIP demonstrated superior performance over the ground-truth-free reconstruction baselines, both quantitatively and qualitatively.
arXiv Detail & Related papers (2024-08-05T10:32:06Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
Current commercial Digital Subtraction Angiography (DSA) systems typically demand hundreds of scanning views to perform reconstruction.
The dynamic blood flow and insufficient input of sparse-view DSA images present significant challenges to the 3D vessel reconstruction task.
We propose to use a time-agnostic vessel probability field to solve this problem effectively.
arXiv Detail & Related papers (2024-05-17T11:23:33Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - STPDnet: Spatial-temporal convolutional primal dual network for dynamic
PET image reconstruction [16.47493157003075]
We propose a spatial-temporal convolutional primal dual network (STPDnet) for dynamic PET image reconstruction.
The physical projection of PET is embedded in the iterative learning process of the network.
Experiments have shown that the proposed method can achieve substantial noise in both temporal and spatial domains.
arXiv Detail & Related papers (2023-03-08T15:43:15Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel
UNet for enhancing super-resolution of dynamic MRI [0.27998963147546135]
Magnetic resonance imaging (MRI) provides high spatial resolution and excellent soft-tissue contrast without using harmful ionising radiation.
MRI with high temporal resolution suffers from limited spatial resolution.
Deep learning based super-resolution approaches have been proposed to mitigate this trade-off.
This research addresses the problem by creating a deep learning model which attempts to learn both spatial and temporal relationships.
arXiv Detail & Related papers (2022-02-10T22:20:58Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3D hyperspectral image (HSI) reconstruction refers to inverse process of snapshot compressive imaging.
Proposal is for a Spatial/Spectral Invariant Residual U-Net, namely SSI-ResU-Net.
We show that SSI-ResU-Net achieves competing performance with over 77.3% reduction in terms of floating-point operations.
arXiv Detail & Related papers (2021-08-17T16:20:51Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
We propose two image restoration approaches: (i) Deep Image Prior (DIP), which trains a convolutional neural network (CNN) from scratch in test time using the degraded image; and (ii) a backprojection (BP) fidelity term, which is an alternative to the standard least squares loss that is usually used in previous DIP works.
We demonstrate the performance of the proposed method, termed BP-DIP, on the deblurring task and show its advantages over the plain DIP, with both higher PSNR values and better inference run-time.
arXiv Detail & Related papers (2020-03-11T17:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.