Latent Space Data Fusion Outperforms Early Fusion in Multimodal Mental Health Digital Phenotyping Data
- URL: http://arxiv.org/abs/2507.14175v1
- Date: Thu, 10 Jul 2025 18:10:46 GMT
- Title: Latent Space Data Fusion Outperforms Early Fusion in Multimodal Mental Health Digital Phenotyping Data
- Authors: Youcef Barkat, Dylan Hamitouche, Deven Parekh, Ivy Guo, David Benrimoh,
- Abstract summary: Mental illnesses such as depression and anxiety require improved methods for early detection and personalized intervention.<n>Traditional predictive models often rely on unimodal data or early fusion strategies that fail to capture the complex, multimodal nature of psychiatric data.<n>We evaluated intermediate (latent space) fusion for predicting daily depressive symptoms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Mental illnesses such as depression and anxiety require improved methods for early detection and personalized intervention. Traditional predictive models often rely on unimodal data or early fusion strategies that fail to capture the complex, multimodal nature of psychiatric data. Advanced integration techniques, such as intermediate (latent space) fusion, may offer better accuracy and clinical utility. Methods: Using data from the BRIGHTEN clinical trial, we evaluated intermediate (latent space) fusion for predicting daily depressive symptoms (PHQ-2 scores). We compared early fusion implemented with a Random Forest (RF) model and intermediate fusion implemented via a Combined Model (CM) using autoencoders and a neural network. The dataset included behavioral (smartphone-based), demographic, and clinical features. Experiments were conducted across multiple temporal splits and data stream combinations. Performance was evaluated using mean squared error (MSE) and coefficient of determination (R2). Results: The CM outperformed both RF and Linear Regression (LR) baselines across all setups, achieving lower MSE (0.4985 vs. 0.5305 with RF) and higher R2 (0.4695 vs. 0.4356). The RF model showed signs of overfitting, with a large gap between training and test performance, while the CM maintained consistent generalization. Performance was best when integrating all data modalities in the CM (in contradistinction to RF), underscoring the value of latent space fusion for capturing non-linear interactions in complex psychiatric datasets. Conclusion: Latent space fusion offers a robust alternative to traditional fusion methods for prediction with multimodal mental health data. Future work should explore model interpretability and individual-level prediction for clinical deployment.
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era [3.2549142515720044]
This paper introduces a new process model for multimodal Data Fusion for Data Mining.
Our model aims to decrease computational costs, complexity, and bias while improving efficiency and reliability.
We demonstrate its efficacy through three use cases: predicting diabetic retinopathy using retinal images and patient metadata, domestic violence prediction employing satellite imagery, internet, and census data, and identifying clinical and demographic features from radiography images and clinical notes.
arXiv Detail & Related papers (2024-04-18T15:52:42Z) - DrFuse: Learning Disentangled Representation for Clinical Multi-Modal
Fusion with Missing Modality and Modal Inconsistency [18.291267748113142]
We propose DrFuse to achieve effective clinical multi-modal fusion.
We address the missing modality issue by disentangling the features shared across modalities and those unique within each modality.
We validate the proposed method using real-world large-scale datasets, MIMIC-IV and MIMIC-CXR.
arXiv Detail & Related papers (2024-03-10T12:41:34Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
Stroke is a common disabling neurological condition that affects about one-quarter of the adult population over age 25.
Our proposed fusion model achieves 0.87, 0.80 and 80.45% for AUC, F1-score and accuracy, respectively.
arXiv Detail & Related papers (2024-02-16T18:51:42Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
In this work, we propose an efficient reinforcement learning(RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL.
The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset and two real-world medical image segmentation datasets.
arXiv Detail & Related papers (2022-03-12T04:11:42Z) - Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free
Survival using a Full-Scale UNet with Attention [0.8138288420049126]
The MICCAI 2021 HEad and neCK TumOR (HECKTOR) segmentation and outcome prediction challenge creates a platform for comparing segmentation methods.
We trained multiple neural networks for tumor volume segmentation, and these segmentations were ensembled achieving an average Dice Similarity Coefficient of 0.75 in cross-validation.
For prediction of patient progression free survival task, we propose a Cox proportional hazard regression combining clinical, radiomic, and deep learning features.
arXiv Detail & Related papers (2021-11-06T10:28:48Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.