A Comprehensive Benchmark for Electrocardiogram Time-Series
- URL: http://arxiv.org/abs/2507.14206v1
- Date: Tue, 15 Jul 2025 02:54:24 GMT
- Title: A Comprehensive Benchmark for Electrocardiogram Time-Series
- Authors: Zhijiang Tang, Jiaxin Qi, Yuhua Zheng, Jianqiang Huang,
- Abstract summary: Electrocardiogram is crucial for assessing cardiac health and diagnosing various diseases.<n>ECG data is often incorporated into pre-training datasets for large-scale time-series model training.
- Score: 31.656774120734358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiogram~(ECG), a key bioelectrical time-series signal, is crucial for assessing cardiac health and diagnosing various diseases. Given its time-series format, ECG data is often incorporated into pre-training datasets for large-scale time-series model training. However, existing studies often overlook its unique characteristics and specialized downstream applications, which differ significantly from other time-series data, leading to an incomplete understanding of its properties. In this paper, we present an in-depth investigation of ECG signals and establish a comprehensive benchmark, which includes (1) categorizing its downstream applications into four distinct evaluation tasks, (2) identifying limitations in traditional evaluation metrics for ECG analysis, and introducing a novel metric; (3) benchmarking state-of-the-art time-series models and proposing a new architecture. Extensive experiments demonstrate that our proposed benchmark is comprehensive and robust. The results validate the effectiveness of the proposed metric and model architecture, which establish a solid foundation for advancing research in ECG signal analysis.
Related papers
- Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling [50.58126509704037]
Heartcare Suite is a framework for fine-grained electrocardiogram (ECG) understanding.<n>Heartcare-220K is a high-quality, structured, and comprehensive multimodal ECG dataset.<n>Heartcare-Bench is a benchmark to guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios.
arXiv Detail & Related papers (2025-06-06T07:56:41Z) - A Systematic Review of ECG Arrhythmia Classification: Adherence to Standards, Fair Evaluation, and Embedded Feasibility [0.1932975952237668]
This review systematically analyzes ECG classification studies published between 2017 and 2024.<n>We identify state-of-the-art methods meeting E3C criteria and conduct a comparative analysis of accuracy, inference time, energy consumption, and memory usage.<n>By addressing these gaps, this study aims to guide future research toward more robust and clinically viable ECG classification systems.
arXiv Detail & Related papers (2025-03-10T12:57:43Z) - CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
We introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data.<n>Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings.
arXiv Detail & Related papers (2024-11-01T15:54:07Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - Guiding Masked Representation Learning to Capture Spatio-Temporal Relationship of Electrocardiogram [2.2842904085777045]
We introduce ST-MEM (S-Temporal Masked Electrocardiogram Modeling), designed to learntemporal features by reconstructing 12-lead ECG data.
ST-MEM outperforms other SSL baseline methods in various experimental settings for arrhythmia.
arXiv Detail & Related papers (2024-02-02T10:04:13Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.