In-Depth and In-Breadth: Pre-training Multimodal Language Models Customized for Comprehensive Chart Understanding
- URL: http://arxiv.org/abs/2507.14298v1
- Date: Fri, 18 Jul 2025 18:15:09 GMT
- Title: In-Depth and In-Breadth: Pre-training Multimodal Language Models Customized for Comprehensive Chart Understanding
- Authors: Wan-Cyuan Fan, Yen-Chun Chen, Mengchen Liu, Alexander Jacobson, Lu Yuan, Leonid Sigal,
- Abstract summary: We introduce ChartScope, an LVLM optimized for in-depth chart comprehension across diverse chart types.<n>We propose an efficient data generation pipeline that synthesizes paired data for a wide range of chart types.<n>We also establish ChartDQA, a new benchmark for evaluating not only question-answering at different levels but also underlying data understanding.
- Score: 113.17601814293722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent methods for customizing Large Vision Language Models (LVLMs) for domain-specific tasks have shown promising results in scientific chart comprehension. However, existing approaches face two major limitations: First, they rely on paired data from only a few chart types, limiting generalization to wide range of chart types. Secondly, they lack targeted pre-training for chart-data alignment, which hampers the model's understanding of underlying data. In this paper, we introduce ChartScope, an LVLM optimized for in-depth chart comprehension across diverse chart types. We propose an efficient data generation pipeline that synthesizes paired data for a wide range of chart types, along with a novel Dual-Path training strategy that enabling the model to succinctly capture essential data details while preserving robust reasoning capabilities by incorporating reasoning over the underlying data. Lastly, we establish ChartDQA, a new benchmark for evaluating not only question-answering at different levels but also underlying data understanding. Experimental results demonstrate that ChartScope significantly enhances comprehension on a wide range of chart types. The code and data are available at https://davidhalladay.github.io/chartscope_demo.
Related papers
- RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning [63.599057862999]
RefChartQA is a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding.<n>Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%.
arXiv Detail & Related papers (2025-03-29T15:50:08Z) - Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback [37.275533538711436]
We propose a hierarchical pipeline and a new dataset for chart generation.<n>Our dataset, Text2Chart31, includes 31 unique plot types referring to the Matplotlib library.<n>We introduce a reinforcement learning-based instruction tuning technique for chart generation tasks without requiring human feedback.
arXiv Detail & Related papers (2024-10-05T07:25:56Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
This paper explores the training processes necessary to improve MLLMs' comprehension of charts.<n>We introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension.
arXiv Detail & Related papers (2024-07-19T17:58:36Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
We present TinyChart, an efficient MLLM for chart understanding with only 3B parameters.
TinyChart overcomes two key challenges in efficient chart understanding: (1) reduce the burden of learning numerical computations through a Program-of-Thoughts (PoT) learning strategy, and (2) reduce lengthy vision feature sequences produced by the vision transformer for high-resolution images through a Vision Token Merging module.
arXiv Detail & Related papers (2024-04-25T14:23:24Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistant is a vision-language model for universal chart comprehension and reasoning.
It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text.
Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and Chartllama method.
arXiv Detail & Related papers (2024-01-04T17:51:48Z) - ChartLlama: A Multimodal LLM for Chart Understanding and Generation [70.1393163657813]
We create a high-quality instruction-tuning dataset leveraging GPT-4.
Next, we introduce ChartLlama, a multi-modal large language model that we've trained using our created dataset.
arXiv Detail & Related papers (2023-11-27T15:20:23Z) - UniChart: A Universal Vision-language Pretrained Model for Chart
Comprehension and Reasoning [29.947053208614246]
We present UniChart, a pretrained model for chart comprehension and reasoning.
UniChart encodes the relevant text, data, and visual elements of charts and then uses a chart-grounded text decoder to generate the expected output in natural language.
We propose several chart-specific pretraining tasks that include: (i) low-level tasks to extract the visual elements (e.g., bars, lines) and data from charts, and (ii) high-level tasks to acquire chart understanding and reasoning skills.
arXiv Detail & Related papers (2023-05-24T06:11:17Z) - Chart-to-Text: A Large-Scale Benchmark for Chart Summarization [9.647079534077472]
We present Chart-to-text, a large-scale benchmark with two datasets and a total of 44,096 charts.
We explain the dataset construction process and analyze the datasets.
arXiv Detail & Related papers (2022-03-12T17:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.